1
|
Baskaran K, Ploskon E, Tejero R, Yokochi M, Harrus D, Liang Y, Peisach E, Persikova I, Ramelot TA, Sekharan M, Tolchard J, Westbrook JD, Bardiaux B, Schwieters CD, Patwardhan A, Velankar S, Burley SK, Kurisu G, Hoch JC, Montelione GT, Vuister GW, Young JY. Restraint validation of biomolecular structures determined by NMR in the Protein Data Bank. Structure 2024; 32:824-837.e1. [PMID: 38490206 PMCID: PMC11162339 DOI: 10.1016/j.str.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/13/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NEF and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB restraint violation report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.
Collapse
Affiliation(s)
- Kumaran Baskaran
- Biological Magnetic Resonance Data Bank, Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA.
| | - Eliza Ploskon
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Roberto Tejero
- Departamento de Quίmica Fίsica, Universidad de Valencia, Dr. Moliner, 50 46100 Burjassot, Valencia, Spain
| | - Masashi Yokochi
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan; Protein Data Bank Japan, Protein Research Foundation, Minoh, Osaka 562-8686, Japan
| | - Deborah Harrus
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yuhe Liang
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Irina Persikova
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Theresa A Ramelot
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - James Tolchard
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Benjamin Bardiaux
- Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, 75015 Paris, France
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Ardan Patwardhan
- The Electron Microscopy Data Bank, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sameer Velankar
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, La Jolla, CA, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Genji Kurisu
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan; Protein Data Bank Japan, Protein Research Foundation, Minoh, Osaka 562-8686, Japan
| | - Jeffrey C Hoch
- Biological Magnetic Resonance Data Bank, Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Jasmine Y Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Baskaran K, Ploskon E, Tejero R, Yokochi M, Harrus D, Liang Y, Peisach E, Persikova I, Ramelot TA, Sekharan M, Tolchard J, Westbrook JD, Bardiaux B, Schwieters CD, Patwardhan A, Velankar S, Burley SK, Kurisu G, Hoch JC, Montelione GT, Vuister GW, Young JY. Restraint Validation of Biomolecular Structures Determined by NMR in the Protein Data Bank. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575520. [PMID: 38328042 PMCID: PMC10849500 DOI: 10.1101/2024.01.15.575520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NMR exchange (NEF) and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB Restraint Violation Report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.
Collapse
Affiliation(s)
- Kumaran Baskaran
- Biological Magnetic Resonance Data Bank, Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Eliza Ploskon
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Roberto Tejero
- Departamento de Quίmica Fίsica, Universidad de Valencia, Dr. Moliner, 50 46100-Burjassot, Valencia, Spain
| | - Masashi Yokochi
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Protein Data Bank Japan, Protein Research Foundation, Minoh, Osaka 562-8686, Japan
| | - Deborah Harrus
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Yuhe Liang
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Irina Persikova
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Theresa A Ramelot
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - James Tolchard
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Benjamin Bardiaux
- Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, 75015 Paris, France
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Ardan Patwardhan
- The Electron Microscopy Data Bank, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sameer Velankar
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, California, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Genji Kurisu
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Protein Data Bank Japan, Protein Research Foundation, Minoh, Osaka 562-8686, Japan
| | - Jeffrey C Hoch
- Biological Magnetic Resonance Data Bank, Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Gaetano T Montelione
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Jasmine Y Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Arfin S, Agrawal K, Maurya S, Asthana S, Di Silvestre D, Kumar D. Lead phytochemicals and marine compounds against ceruloplasmin in cancer targeting. J Biomol Struct Dyn 2023; 42:12703-12719. [PMID: 37878121 DOI: 10.1080/07391102.2023.2272753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
In silico docking studies serve as a swift and efficient means to sift through a vast array of natural and synthetic small molecules, aiding in the identification of potential inhibitors for cancer biomarkers. One such biomarker, ceruloplasmin (CP), has been implicated in various tumor types due to its overexpression, earning it recognition as a marker of aggressive tumors. This study focused on pinpointing inhibitors for the CP -Myeloperoxidase (MPO) interaction site, a complex formation known to impede HOCl production, a crucial process for inducing apoptotic cell death in tumor cells. The initial phase of our investigation involved in silico docking studies, which screened a diverse library of phytochemicals and marine compounds. Through this process, we identified several promising drug candidates based on their binding affinities. Subsequently, these candidates underwent rigorous filtration based on Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties. Finally, we subjected the selected compounds to molecular dynamics (MDs) simulation to further assess their viability. Lycoperoside F, a steroidal alkaloid glycoside derived from tomatoes (Lycopersicon esculentum), stood out with notable interactions at the binding site. Another noteworthy compound was Xyloglucan (XG) oligosaccharides, predominantly found in the primary cell walls of higher plants. During the subsequent MDs simulations, these interactions were accompanied by highly stable root mean square deviation (RMSD) plots, signifying the consistency and robustness of the observed MDs behavior. XG oligosaccharides demonstrated the highest binding affinity with CP, reaffirming their potential as strong candidates. Additionally, Ardimerin digallate, known as a retroviral ribonuclease H inhibitor for HIV-1 and HIV-2, displayed favorable interactions at the MPO interaction site. Given that promising drug candidates must meet stringent criteria, including non-toxicity, effectiveness, specificity, stability and potency, these phytochemicals have the potential to progress to in vitro studies as CP inhibitors. Ultimately, this could contribute to the suppression of tumor growth, marking a significant step in cancer treatment research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saniya Arfin
- School of Health Sciences and Technology, UPES, Dehradun, India
| | - Kirti Agrawal
- School of Health Sciences and Technology, UPES, Dehradun, India
| | - Sujata Maurya
- School of Health Sciences and Technology, UPES, Dehradun, India
| | | | - Dario Di Silvestre
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES, Dehradun, India
| |
Collapse
|
4
|
Nanna V, Marasco M, Kirkpatrick JP, Carlomagno T. Methods for Structure Determination of SH2 Domain-Phosphopeptide Complexes by NMR. Methods Mol Biol 2023; 2705:3-23. [PMID: 37668966 DOI: 10.1007/978-1-0716-3393-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique to solve the structure of biomolecular complexes at atomic resolution in solution. Small proteins such as Src-homology 2 (SH2) domains have fast tumbling rates and long-lived NMR signals, making them particularly suited to be studied by standard NMR methods. SH2 domains are modular proteins whose function is the recognition of sequences containing phosphotyrosines. In this chapter, we describe the application of NMR to assess the interaction between SH2 domains and phosphopeptides and determine the structure of the resulting complexes.
Collapse
Affiliation(s)
- Vittoria Nanna
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Michelangelo Marasco
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Teresa Carlomagno
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
5
|
Grigas AT, Liu Z, Regan L, O'Hern CS. Core packing of well-defined X-ray and NMR structures is the same. Protein Sci 2022; 31:e4373. [PMID: 35900019 PMCID: PMC9277709 DOI: 10.1002/pro.4373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/10/2022]
Abstract
Numerous studies have investigated the differences and similarities between protein structures determined by solution NMR spectroscopy and those determined by X-ray crystallography. A fundamental question is whether any observed differences are due to differing methodologies or to differences in the behavior of proteins in solution versus in the crystalline state. Here, we compare the properties of the hydrophobic cores of high-resolution protein crystal structures and those in NMR structures, determined using increasing numbers and types of restraints. Prior studies have reported that many NMR structures have denser cores compared with those of high-resolution X-ray crystal structures. Our current work investigates this result in more detail and finds that these NMR structures tend to violate basic features of protein stereochemistry, such as small non-bonded atomic overlaps and few Ramachandran and sidechain dihedral angle outliers. We find that NMR structures solved with more restraints, and which do not significantly violate stereochemistry, have hydrophobic cores that have a similar size and packing fraction as their counterparts determined by X-ray crystallography at high resolution. These results lead us to conclude that, at least regarding the core packing properties, high-quality structures determined by NMR and X-ray crystallography are the same, and the differences reported earlier are most likely a consequence of methodology, rather than fundamental differences between the protein in the two different environments.
Collapse
Affiliation(s)
- Alex T. Grigas
- Graduate Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
| | - Zhuoyi Liu
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticutUSA
| | - Lynne Regan
- Institute of Quantitative Biology, Biochemistry and BiotechnologyCentre for Synthetic and Systems Biology, School of Biological Sciences, University of EdinburghEdinburghUK
| | - Corey S. O'Hern
- Graduate Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
- Integrated Graduate Program in Physical and Engineering BiologyYale UniversityNew HavenConnecticutUSA
- Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenConnecticutUSA
- Department of PhysicsYale UniversityNew HavenConnecticutUSA
- Department of Applied PhysicsYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
6
|
Kohli H, Kumar P, Ambasta RK. In silico designing of putative peptides for targeting pathological protein Htt in Huntington's disease. Heliyon 2021; 7:e06088. [PMID: 33659724 PMCID: PMC7890153 DOI: 10.1016/j.heliyon.2021.e06088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/26/2020] [Accepted: 01/21/2021] [Indexed: 12/30/2022] Open
Abstract
Huntington's disease is a neurodegenerative disease caused by CAG repeat in the first exon of HTT (Huntingtin) gene, leading to abnormal form of Htt protein containing enlarged polyglutamine strands of variable length that stick together to form aggregates and is toxic to brain causing brain damage. Complete reversal of brain damage is not possible till date but recovery may be possible by peptide therapy. The peptide-based therapy for Huntington's disease includes both poly Q peptide as well as non poly Q peptides like (QBP1)2, p42, Exendin 4, ED11, CaM, BiP, Leuprorelin peptide. The novel approach that is currently being tested in this article is the peptide-based therapy to target the mutated protein. This approach is based on the principle of preventing the aggregation of mutant Htt by blocking the potential sites responsible for protein aggregation and thereby ameliorating the disease symptoms. Herein, we have screened a variety of potential peptides that were known to prevent the protein aggregation, comparatively analyzed their binding affinity with homology modeled Htt protein, designed novel peptides based upon conservation analysis among screened potential peptides as a therapeutic agent, comparatively analyzed the therapeutic potential of novel peptides against modeled Htt protein for investigating the therapeutic prospects of Huntington's disease. We have designed a peptide for the therapy of Huntington's disease by comparing several peptides, which are already in use for Huntington's disease.
Collapse
Affiliation(s)
- Harleen Kohli
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi 110042, India
| | - Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi 110042, India
| |
Collapse
|
7
|
Hu Y, Cheng K, He L, Zhang X, Jiang B, Jiang L, Li C, Wang G, Yang Y, Liu M. NMR-Based Methods for Protein Analysis. Anal Chem 2021; 93:1866-1879. [PMID: 33439619 DOI: 10.1021/acs.analchem.0c03830] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a well-established method for analyzing protein structure, interaction, and dynamics at atomic resolution and in various sample states including solution state, solid state, and membranous environment. Thanks to rapid NMR methodology development, the past decade has witnessed a growing number of protein NMR studies in complex systems ranging from membrane mimetics to living cells, which pushes the research frontier further toward physiological environments and offers unique insights in elucidating protein functional mechanisms. In particular, in-cell NMR has become a method of choice for bridging the huge gap between structural biology and cell biology. Herein, we review the recent developments and applications of NMR methods for protein analysis in close-to-physiological environments, with special emphasis on in-cell protein structural determination and the analysis of protein dynamics, both difficult to be accessed by traditional methods.
Collapse
Affiliation(s)
- Yunfei Hu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Lichun He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Bin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Guan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
8
|
Fowler NJ, Sljoka A, Williamson MP. A method for validating the accuracy of NMR protein structures. Nat Commun 2020; 11:6321. [PMID: 33339822 PMCID: PMC7749147 DOI: 10.1038/s41467-020-20177-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/13/2020] [Indexed: 01/13/2023] Open
Abstract
We present a method that measures the accuracy of NMR protein structures. It compares random coil index [RCI] against local rigidity predicted by mathematical rigidity theory, calculated from NMR structures [FIRST], using a correlation score (which assesses secondary structure), and an RMSD score (which measures overall rigidity). We test its performance using: structures refined in explicit solvent, which are much better than unrefined structures; decoy structures generated for 89 NMR structures; and conventional predictors of accuracy such as number of restraints per residue, restraint violations, energy of structure, ensemble RMSD, Ramachandran distribution, and clashscore. Restraint violations and RMSD are poor measures of accuracy. Comparisons of NMR to crystal structures show that secondary structure is equally accurate, but crystal structures are typically too rigid in loops, whereas NMR structures are typically too floppy overall. We show that the method is a useful addition to existing measures of accuracy.
Collapse
Affiliation(s)
- Nicholas J Fowler
- Dept of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Adnan Sljoka
- RIKEN Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo, 103-0027, Japan.
- Dept of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada.
| | - Mike P Williamson
- Dept of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| |
Collapse
|
9
|
Li F, Shrivastava IH, Hanlon P, Dagda RK, Gasanoff ES. Molecular Mechanism by which Cobra Venom Cardiotoxins Interact with the Outer Mitochondrial Membrane. Toxins (Basel) 2020; 12:E425. [PMID: 32605112 PMCID: PMC7404710 DOI: 10.3390/toxins12070425] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
Cardiotoxin CTII from Najaoxiana cobra venom translocates to the intermembrane space (IMS) of mitochondria to disrupt the structure and function of the inner mitochondrial membrane. At low concentrations, CTII facilitates ATP-synthase activity, presumably via the formation of non-bilayer, immobilized phospholipids that are critical in modulating ATP-synthase activity. In this study, we investigated the effects of another cardiotoxin CTI from Najaoxiana cobra venom on the structure of mitochondrial membranes and on mitochondrial-derived ATP synthesis. By employing robust biophysical methods including 31P-NMR and 1H-NMR spectroscopy, we analyzed the effects of CTI and CTII on phospholipid packing and dynamics in model phosphatidylcholine (PC) membranes enriched with 2.5 and 5.0 mol% of cardiolipin (CL), a phospholipid composition that mimics that in the outer mitochondrial membrane (OMM). These experiments revealed that CTII converted a higher percentage of bilayer phospholipids to a non-bilayer and immobilized state and both cardiotoxins utilized CL and PC molecules to form non-bilayer structures. Furthermore, in order to gain further understanding on how cardiotoxins bind to mitochondrial membranes, we employed molecular dynamics (MD) and molecular docking simulations to investigate the molecular mechanisms by which CTII and CTI interactively bind with an in silico phospholipid membrane that models the composition similar to the OMM. In brief, MD studies suggest that CTII utilized the N-terminal region to embed the phospholipid bilayer more avidly in a horizontal orientation with respect to the lipid bilayer and thereby penetrate at a faster rate compared with CTI. Molecular dynamics along with the Autodock studies identified critical amino acid residues on the molecular surfaces of CTII and CTI that facilitated the long-range and short-range interactions of cardiotoxins with CL and PC. Based on our compiled data and our published findings, we provide a conceptual model that explains a molecular mechanism by which snake venom cardiotoxins, including CTI and CTII, interact with mitochondrial membranes to alter the mitochondrial membrane structure to either upregulate ATP-synthase activity or disrupt mitochondrial function.
Collapse
Affiliation(s)
- Feng Li
- STEM Program, Science Department, Chaoyang KaiWen Academy, Yard 46, 3rd Baoquan Street, Chaoyang District, Beijing 100018, China; (F.L.); (P.H.); (E.S.G.)
| | - Indira H. Shrivastava
- Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul Hanlon
- STEM Program, Science Department, Chaoyang KaiWen Academy, Yard 46, 3rd Baoquan Street, Chaoyang District, Beijing 100018, China; (F.L.); (P.H.); (E.S.G.)
| | - Ruben K. Dagda
- Reno School of Medicine, Department of Pharmacology, University of Nevada, Reno, NV 89557, USA
| | - Edward S. Gasanoff
- STEM Program, Science Department, Chaoyang KaiWen Academy, Yard 46, 3rd Baoquan Street, Chaoyang District, Beijing 100018, China; (F.L.); (P.H.); (E.S.G.)
| |
Collapse
|
10
|
A novel polyubiquitin chain linkage formed by viral Ubiquitin is resistant to host deubiquitinating enzymes. Biochem J 2020; 477:2193-2219. [PMID: 32478812 DOI: 10.1042/bcj20200289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022]
Abstract
The Baculoviridae family of viruses encode a viral Ubiquitin (vUb) gene. Though the vUb is homologous to the host eukaryotic Ubiquitin (Ub), its preservation in the viral genome indicates unique functions that are not compensated by the host Ub. We report the structural, biophysical, and biochemical properties of the vUb from Autographa californica multiple nucleo-polyhedrosis virus (AcMNPV). The packing of central helix α1 to the beta-sheet β1-β5 is different between vUb and Ub. Consequently, its stability is lower compared with Ub. However, the surface properties, ubiquitination activity, and the interaction with Ubiquitin-binding domains are similar between vUb and Ub. Interestingly, vUb forms atypical polyubiquitin chain linked by lysine at the 54th position (K54), and the deubiquitinating enzymes are ineffective against the K54-linked polyubiquitin chains. We propose that the modification of host/viral proteins with the K54-linked chains is an effective way selected by the virus to protect the vUb signal from host DeUbiquitinases.
Collapse
|
11
|
Klück V, van Deuren RC, Cavalli G, Shaukat A, Arts P, Cleophas MC, Crișan TO, Tausche AK, Riches P, Dalbeth N, Stamp LK, Hindmarsh JH, Jansen TLTA, Janssen M, Steehouwer M, Lelieveld S, van de Vorst M, Gilissen C, Dagna L, Van de Veerdonk FL, Eisenmesser EZ, Kim S, Merriman TR, Hoischen A, Netea MG, Dinarello CA, Joosten LA. Rare genetic variants in interleukin-37 link this anti-inflammatory cytokine to the pathogenesis and treatment of gout. Ann Rheum Dis 2020; 79:536-544. [PMID: 32114511 DOI: 10.1136/annrheumdis-2019-216233] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Gout is characterised by severe interleukin (IL)-1-mediated joint inflammation induced by monosodium urate crystals. Since IL-37 is a pivotal anti-inflammatory cytokine suppressing the activity of IL-1, we conducted genetic and functional studies aimed at elucidating the role of IL-37 in the pathogenesis and treatment of gout. METHODS Variant identification was performed by DNA sequencing of all coding bases of IL37 using molecular inversion probe-based resequencing (discovery cohort: gout n=675, controls n=520) and TaqMan genotyping (validation cohort: gout n=2202, controls n=2295). Predictive modelling of the effects of rare variants on protein structure was followed by in vitro experiments evaluating the impact on protein function. Treatment with recombinant IL-37 was evaluated in vitro and in vivo in a mouse model of gout. RESULTS We identified four rare variants in IL37 in six of the discovery gout patients; p.(A144P), p.(G174Dfs*16), p.(C181*) and p.(N182S), whereas none emerged in healthy controls (Fisher's exact p-value=0.043). All variants clustered in the functional domain of IL-37 in exon 5 (p-value=5.71×10-5). Predictive modelling and functional studies confirmed loss of anti-inflammatory functions and we substantiated the therapeutic potential of recombinant IL-37 in the treatment of gouty inflammation. Furthermore, the carrier status of p.(N182S)(rs752113534) was associated with increased risk (OR=1.81, p-value=0.031) of developing gout in hyperuricaemic individuals of Polynesian ancestry. CONCLUSION Here, we provide genetic as well as mechanistic evidence for the role of IL-37 in the pathogenesis of gout, and highlight the therapeutic potential of recombinant IL-37 for the treatment of gouty arthritis.
Collapse
Affiliation(s)
- Viola Klück
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rosanne C van Deuren
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Giulio Cavalli
- Internal Medicine and Clinical Immunology, Vita-Salute San Raffaele University, Milan, Italy
- Department of Medicine, University of Colorado Denver, Denver, Colorado, USA
| | - Amara Shaukat
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Peer Arts
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Maartje C Cleophas
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tania O Crișan
- Department of Medical Genetics, Universitatea de Medicina si Farmacie Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Anne-Kathrin Tausche
- Department of Internal Medicine, Section of Rheumatology, University Clinic Carl Gustav Carus, Dresden, Saxonia, Germany
| | - Philip Riches
- Rheumatology and Bone Disease, University of Edinburgh, Edinburgh, UK
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Lisa K Stamp
- Department of Medicine, Otago University, Christchurch, Canterbury, New Zealand
| | - Jennie Harré Hindmarsh
- Te Rangawairua o Paratene Ngata Research Centre, Ngāti Porou Hauora Charitable Trust, Te Puia Springs, Tairāwhiti, New Zealand
| | - Tim L Th A Jansen
- Department of Rheumatology, VieCuri Medical Center, Venlo, The Netherlands
| | - Matthijs Janssen
- Department of Rheumatology, VieCuri Medical Center, Venlo, The Netherlands
| | - Marloes Steehouwer
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefan Lelieveld
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje van de Vorst
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lorenzo Dagna
- Internal Medicine and Clinical Immunology, Vita-Salute San Raffaele University, Milan, Italy
| | - Frank L Van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, Colorado, USA
| | - SooHyun Kim
- Laboratory of Cytokine Immunology, Konkuk University, Seoul, Korea (the Republic of)
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Charles A Dinarello
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medicine, University of Colorado Denver, Denver, Colorado, USA
| | - Leo Ab Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Universitatea de Medicina si Farmacie Iuliu Hatieganu, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Leone S, Emendato A, Spadaccini R, Picone D. Solution structure of insect CSP and OBPs by NMR. Methods Enzymol 2020; 642:169-192. [DOI: 10.1016/bs.mie.2020.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Surana P, Gowda CM, Tripathi V, Broday L, Das R. Structural and functional analysis of SMO-1, the SUMO homolog in Caenorhabditis elegans. PLoS One 2017; 12:e0186622. [PMID: 29045470 PMCID: PMC5646861 DOI: 10.1371/journal.pone.0186622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023] Open
Abstract
SUMO proteins are important post-translational modifiers involved in multiple cellular pathways in eukaryotes, especially during the different developmental stages in multicellular organisms. The nematode C. elegans is a well known model system for studying metazoan development and has a single SUMO homolog, SMO-1. Interestingly, SMO-1 modification is linked to embryogenesis and development in the nematode. However, high-resolution information about SMO-1 and the mechanism of its conjugation is lacking. In this work, we report the high-resolution three dimensional structure of SMO-1 solved by NMR spectroscopy. SMO-1 has flexible N-terminal and C-terminal tails on either side of a rigid beta-grasp folded core. While the sequence of SMO-1 is more similar to SUMO1, the electrostatic surface features of SMO-1 resemble more with SUMO2/3. SMO-1 can bind to typical SUMO Interacting Motifs (SIMs). SMO-1 can also conjugate to a typical SUMOylation consensus site as well as to its natural substrate HMR-1. Poly-SMO-1 chains were observed in-vitro even though SMO-1 lacks any consensus SUMOylation site. Typical deSUMOylation enzymes like Senp2 can cleave the poly-SMO-1 chains. Despite being a single gene, the SMO-1 structure allows it to function in a large repertoire of signaling pathways involving SUMO in C. elegans. Structural and functional features of SMO-1 studies described here will be useful to understand its role in development.
Collapse
Affiliation(s)
- Parag Surana
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Chandrakala M. Gowda
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Vasvi Tripathi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Limor Broday
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
- * E-mail:
| |
Collapse
|
14
|
Priya R, Sneha P, Rivera Madrid R, Doss CP, Singh P, Siva R. Molecular Modeling and Dynamic Simulation of Arabidopsis Thaliana
Carotenoid Cleavage Dioxygenase Gene: A Comparison with Bixa orellana
and Crocus Sativus. J Cell Biochem 2017; 118:2712-2721. [DOI: 10.1002/jcb.25919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/30/2017] [Indexed: 01/18/2023]
Affiliation(s)
- R. Priya
- School of Bio Sciences and Technology; VIT University; Vellore 632014 Tamil Nadu India
| | - P. Sneha
- School of Bio Sciences and Technology; VIT University; Vellore 632014 Tamil Nadu India
| | - Renata Rivera Madrid
- Cenro de Investigacion Cientifica de Yucatan A.C. Calle 43 No. 130; Col. Chuburnade Hidalgo; Merida 97200 Yucatan Mexico
| | - C.George Priya Doss
- School of Bio Sciences and Technology; VIT University; Vellore 632014 Tamil Nadu India
| | - Pooja Singh
- Centre for Research in Biotechnology for Agriculture; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Ramamoorthy Siva
- School of Bio Sciences and Technology; VIT University; Vellore 632014 Tamil Nadu India
| |
Collapse
|
15
|
Tuukkanen AT, Kleywegt GJ, Svergun DI. Resolution of ab initio shapes determined from small-angle scattering. IUCRJ 2016; 3:440-447. [PMID: 27840683 PMCID: PMC5094446 DOI: 10.1107/s2052252516016018] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 05/31/2023]
Abstract
Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.
Collapse
Affiliation(s)
- Anne T. Tuukkanen
- EMBL Hamburg c/o DESY, European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
- European Bioinformatics Institute (EMBL–EBI), European Molecular Biology Laboratory, Welcome Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Gerard J. Kleywegt
- European Bioinformatics Institute (EMBL–EBI), European Molecular Biology Laboratory, Welcome Genome Campus, Hinxton, Cambridge CB10 1SD, England
| | - Dmitri I. Svergun
- EMBL Hamburg c/o DESY, European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
16
|
Sala D, Giachetti A, Luchinat C, Rosato A. A protocol for the refinement of NMR structures using simultaneously pseudocontact shift restraints from multiple lanthanide ions. JOURNAL OF BIOMOLECULAR NMR 2016; 66:175-185. [PMID: 27771862 DOI: 10.1007/s10858-016-0065-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
The binding of paramagnetic metal ions to proteins produces a number of different effects on the NMR spectra of the system. In particular, when the magnetic susceptibility of the metal ion is anisotropic, pseudocontact shifts (PCSs) arise and can be easily measured. They constitute very useful restraints for the solution structure determination of metal-binding proteins. In this context, there has been great interest in the use of lanthanide(III) ions to induce PCSs in diamagnetic proteins, e.g. through the replacement native calcium(II) ions. By preparing multiple samples in each of which a different ion of the lanthanide series is introduced, it is possible to obtain multiple independent PCS datasets that can be used synergistically to generate protein structure ensembles (typically called bundles). For typical NMR-based determination of protein structure, it is necessary to perform an energetic refinement of such initial bundles to obtain final structures whose geometric quality is suitable for deposition in the PDB. This can be conveniently done by using restrained molecular dynamics simulations (rMD) in explicit solvent. However, there are no available protocols for rMD using multiple PCS datasets as part of the restraints. In this work, we extended the PCS module of the AMBER MD package to handle multiple datasets and tuned a previously developed protocol for NMR structure refinement to achieve consistent convergence with PCS restraints. Test calculations with real experimental data show that this new implementation delivers the expected improvement of protein geometry, resulting in final structures that are of suitable quality for deposition. Furthermore, we observe that also initial structures generated only with traditional restraints can be successfully refined using traditional and PCS restraints simultaneously.
Collapse
Affiliation(s)
- Davide Sala
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Andrea Giachetti
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Antonio Rosato
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
17
|
Surana P, Das R. Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR. Protein Sci 2016; 25:1438-50. [PMID: 27111887 DOI: 10.1002/pro.2940] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/20/2016] [Indexed: 01/29/2023]
Abstract
The study of intermediates in the protein folding pathway provides a wealth of information about the energy landscape. The intermediates also frequently initiate pathogenic fibril formations. While observing the intermediates is difficult due to their transient nature, extreme conditions can partially unfold the proteins and provide a glimpse of the intermediate states. Here, we observe the high resolution structure of a hydrophobic core mutant of Ubiquitin at an extreme acidic pH by nuclear magnetic resonance (NMR) spectroscopy. In the structure, the native secondary and tertiary structure is conserved for a major part of the protein. However, a long loop between the beta strands β3 and β5 is partially unfolded. The altered structure is supported by fluorescence data and the difference in free energies between the native state and the intermediate is reflected in the denaturant induced melting curves. The unfolded region includes amino acids that are critical for interaction with cofactors as well as for assembly of poly-Ubiquitin chains. The structure at acidic pH resembles a late folding intermediate of Ubiquitin and indicates that upon stabilization of the protein's core, the long loop converges on the core in the final step of the folding process.
Collapse
Affiliation(s)
- Parag Surana
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, Karnataka, India
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, Karnataka, India
| |
Collapse
|
18
|
Calvanese L, D'Auria G, Vangone A, Falcigno L, Oliva R. Analysis of the interface variability in NMR structure ensembles of protein-protein complexes. J Struct Biol 2016; 194:317-24. [PMID: 26968364 DOI: 10.1016/j.jsb.2016.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 01/22/2023]
Abstract
NMR structures consist in ensembles of conformers, all satisfying the experimental restraints, which exhibit a certain degree of structural variability. We analyzed here the interface in NMR ensembles of protein-protein heterodimeric complexes and found it to span a wide range of different conservations. The different exhibited conservations do not simply correlate with the size of the systems/interfaces, and are most probably the result of an interplay between different factors, including the quality of experimental data and the intrinsic complex flexibility. In any case, this information is not to be missed when NMR structures of protein-protein complexes are analyzed; especially considering that, as we also show here, the first NMR conformer is usually not the one which best reflects the overall interface. To quantify the interface conservation and to analyze it, we used an approach originally conceived for the analysis and ranking of ensembles of docking models, which has now been extended to directly deal with NMR ensembles. We propose this approach, based on the conservation of the inter-residue contacts at the interface, both for the analysis of the interface in whole ensembles of NMR complexes and for the possible selection of a single conformer as the best representative of the overall interface. In order to make the analyses automatic and fast, we made the protocol available as a web tool at: https://www.molnac.unisa.it/BioTools/consrank/consrank-nmr.html.
Collapse
Affiliation(s)
- Luisa Calvanese
- CIRPeB, University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging - CNR, via Mezzocannone, 16, 80134 Naples, Italy.
| | - Gabriella D'Auria
- CIRPeB, University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging - CNR, via Mezzocannone, 16, 80134 Naples, Italy.
| | - Anna Vangone
- Computational Structural Biology Group, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, Netherlands.
| | - Lucia Falcigno
- CIRPeB, University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy; Institute of Biostructures and Bioimaging - CNR, via Mezzocannone, 16, 80134 Naples, Italy.
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy.
| |
Collapse
|
19
|
Varadi M, Vranken W, Guharoy M, Tompa P. Computational approaches for inferring the functions of intrinsically disordered proteins. Front Mol Biosci 2015; 2:45. [PMID: 26301226 PMCID: PMC4525029 DOI: 10.3389/fmolb.2015.00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/21/2015] [Indexed: 01/09/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) are ubiquitously involved in cellular processes and often implicated in human pathological conditions. The critical biological roles of these proteins, despite not adopting a well-defined fold, encouraged structural biologists to revisit their views on the protein structure-function paradigm. Unfortunately, investigating the characteristics and describing the structural behavior of IDPs is far from trivial, and inferring the function(s) of a disordered protein region remains a major challenge. Computational methods have proven particularly relevant for studying IDPs: on the sequence level their dependence on distinct characteristics determined by the local amino acid context makes sequence-based prediction algorithms viable and reliable tools for large scale analyses, while on the structure level the in silico integration of fundamentally different experimental data types is essential to describe the behavior of a flexible protein chain. Here, we offer an overview of the latest developments and computational techniques that aim to uncover how protein function is connected to intrinsic disorder.
Collapse
Affiliation(s)
- Mihaly Varadi
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium
| | - Wim Vranken
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium ; ULB-VUB - Interuniversity Institute of Bioinformatics in Brussels (IB)2 Brussels, Belgium
| | - Mainak Guharoy
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium
| | - Peter Tompa
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium
| |
Collapse
|
20
|
Hasan MA, Mazumder MHH, Chowdhury AS, Datta A, Khan MA. Molecular-docking study of malaria drug target enzyme transketolase in Plasmodium falciparum 3D7 portends the novel approach to its treatment. SOURCE CODE FOR BIOLOGY AND MEDICINE 2015; 10:7. [PMID: 26089981 PMCID: PMC4472393 DOI: 10.1186/s13029-015-0037-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 05/08/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Malaria has been a major life threatening mosquito borne disease from long since. Unavailability of any effective vaccine and recent emergence of multi drug resistant strains of malaria pathogen Plasmodium falciparum continues to cause persistent deaths in the tropical and sub-tropical region. As a result, demands for new targets for more effective anti-malarial drugs are escalating. Transketolase is an enzyme of the pentose phosphate pathway; a novel pathway which is involved in energy generation and nucleic acid synthesis. Moreover, significant difference in homology between Plasmodium falciparum transketolase (Pftk) and human (Homo sapiens) transketolase makes it a suitable candidate for drug therapy. Our present study is aimed to predict the 3D structure of Plasmodium falciparum transketolase and design an inhibitor against it. RESULTS The primary and secondary structural features of the protein is calculated by ProtParam and SOPMA respectively which revealed the protein is composed of 43.3 % alpha helix and 33.04 % random coils along with 15.62 % extended strands, 8.04 % beta turns. The three dimensional structure of the transketolase is constructed using homology modeling tool MODELLAR utilizing several available transketolase structures as templates. The structure is then subjected to deep optimization and validated by structure validation tools PROCHECK, VERIFY 3D, ERRAT, QMEAN. The predicted model scored 0.74 for global model reliability in PROCHECK analysis, which ensures the quality of the model. According to VERIFY 3D the predicted model scored 0.77 which determines good environmental profile along with ERRAT score of 78.313 which is below 95 % rejection limit. Protein-protein and residue-residue interaction networks are generated by STRING and RING server respectively. CASTp server was used to analyze active sites and His 109, Asn 108 and His 515 are found to be more positive site to dock the substrate, in addition molecular docking simulation with Autodock vina determined the estimated free energy of molecular binding was of -6.6 kcal/mol for most favorable binding of 6'-Methyl-Thiamin Diphosphate. CONCLUSION This predicted structure of Pftk will serve first hand in the future development of effective Pftk inhibitors with potential anti-malarial activity. However, this is a preliminary study of designing an inhibitor against Plasmodium falciparum 3D7; the results await justification by in vitro and in vivo experimentations.
Collapse
Affiliation(s)
- Md. Anayet Hasan
- />Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331 Bangladesh
| | - Md. Habibul Hasan Mazumder
- />Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331 Bangladesh
| | - Afrin Sultana Chowdhury
- />Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331 Bangladesh
| | - Amit Datta
- />Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331 Bangladesh
| | - Md. Arif Khan
- />Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902 Bangladesh
| |
Collapse
|
21
|
Vranken WF, Vuister GW, Bonvin AMJJ. NMR-based modeling and refinement of protein 3D structures. Methods Mol Biol 2015; 1215:351-380. [PMID: 25330971 DOI: 10.1007/978-1-4939-1465-4_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
NMR is a well-established method to characterize the structure and dynamics of biomolecules in solution. High-quality structures can now be produced thanks to both experimental advances and computational developments that incorporate new NMR parameters and improved protocols and force fields in the structure calculation and refinement process. In this chapter, we give a short overview of the various types of NMR data that can provide structural information, and then focus on the structure calculation methodology itself. We discuss and illustrate with tutorial examples "classical" structure calculation, refinement, and structure validation approaches.
Collapse
Affiliation(s)
- Wim F Vranken
- Department of Structural Biology, VIB Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | | | | |
Collapse
|
22
|
Skinner SP, Goult BT, Fogh RH, Boucher W, Stevens TJ, Laue ED, Vuister GW. Structure calculation, refinement and validation using CcpNmr Analysis. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:154-61. [PMID: 25615869 PMCID: PMC4304695 DOI: 10.1107/s1399004714026662] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/04/2014] [Indexed: 02/02/2023]
Abstract
CcpNmr Analysis provides a streamlined pipeline for both NMR chemical shift assignment and structure determination of biological macromolecules. In addition, it encompasses tools to analyse the many additional experiments that make NMR such a pivotal technique for research into complex biological questions. This report describes how CcpNmr Analysis can seamlessly link together all of the tasks in the NMR structure-determination process. It details each of the stages from generating NMR restraints [distance, dihedral, hydrogen bonds and residual dipolar couplings (RDCs)], exporting these to and subsequently re-importing them from structure-calculation software (such as the programs CYANA or ARIA) and analysing and validating the results obtained from the structure calculation to, ultimately, the streamlined deposition of the completed assignments and the refined ensemble of structures into the PDBe repository. Until recently, such solution-structure determination by NMR has been quite a laborious task, requiring multiple stages and programs. However, with the new enhancements to CcpNmr Analysis described here, this process is now much more intuitive and efficient and less error-prone.
Collapse
Affiliation(s)
- Simon P. Skinner
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Benjamin T. Goult
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Rasmus H. Fogh
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, England
| | - Wayne Boucher
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, England
| | - Tim J. Stevens
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Ernest D. Laue
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, England
| | - Geerten W. Vuister
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| |
Collapse
|
23
|
Shahzad K, Hai A, Ahmed A, Kizilbash N, Alruwaili J. A Structured-based Model for the Decreased Activity of Ala222Val and Glu429Ala Methylenetetrahydrofolate Reductase (MTHFR) Mutants. Bioinformation 2013; 9:929-36. [PMID: 24307772 PMCID: PMC3842580 DOI: 10.6026/97320630009929] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 09/30/2013] [Indexed: 11/23/2022] Open
Abstract
The structure of human Methylenetetrahydrofolate Reductase (MTHFR) is not known either by NMR or by X-ray methods. Phosphorylation seems to play an important role in the functioning of this flavoprotein. MTHFR catalyzes an irreversible reaction in homocysteine metabolism. Phosphorylation decreases the activity of MTHFR by enhancing the sensitivity of the enzyme to SAdenosylmethione. Two common polymorphisms in MTHFR, Ala222Val and Glu429Ala, can result in a number of vascular diseases. Effects of the Glu429Ala polymorphism on the structure of human MTHFR remain undetermined due to limited structural information. Hence, structural models of the MTHFR mutants were constructed using I-TASSER and assessed by PROCHECK, DFIRE and Verify3D tools. A mechanism is further suggested for the decreased activity of the Ala222Val and Glu429Ala mutants due to a decrease in number of serine phosphorylation sites using information gleaned from the molecular models. This provides insights for the understanding of structure-function relationship for MTHFR.
Collapse
Affiliation(s)
- Khuram Shahzad
- Illinois Informatics Institute, University of Illinois, Urbana-Champaign, Illinois, U.S.A
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Abdul Hai
- Department of Biochemistry, Faculty of Medicine & Applied Medical Sciences, Northern Border University, Arar-91431, Saudi Arabia
| | - Asifa Ahmed
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Nadeem Kizilbash
- Department of Biochemistry, Faculty of Medicine & Applied Medical Sciences, Northern Border University, Arar-91431, Saudi Arabia
| | - Jamal Alruwaili
- Department of Biochemistry, Faculty of Medicine & Applied Medical Sciences, Northern Border University, Arar-91431, Saudi Arabia
| |
Collapse
|
24
|
Rosato A, Tejero R, Montelione GT. Quality assessment of protein NMR structures. Curr Opin Struct Biol 2013; 23:715-24. [PMID: 24060334 DOI: 10.1016/j.sbi.2013.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
Biomolecular NMR structures are now routinely used in biology, chemistry, and bioinformatics. Methods and metrics for assessing the accuracy and precision of protein NMR structures are beginning to be standardized across the biological NMR community. These include both knowledge-based assessment metrics, parameterized from the database of protein structures, and model versus data assessment metrics. On line servers are available that provide comprehensive protein structure quality assessment reports, and efforts are in progress by the world-wide Protein Data Bank (wwPDB) to develop a biomolecular NMR structure quality assessment pipeline as part of the structure deposition process. These quality assessment metrics and standards will aid NMR spectroscopists in determining more accurate structures, and increase the value and utility of these structures for the broad scientific community.
Collapse
Affiliation(s)
- Antonio Rosato
- Magnetic Resonance Center and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | | | | |
Collapse
|
25
|
Montelione GT, Nilges M, Bax A, Güntert P, Herrmann T, Richardson JS, Schwieters CD, Vranken WF, Vuister GW, Wishart DS, Berman HM, Kleywegt GJ, Markley JL. Recommendations of the wwPDB NMR Validation Task Force. Structure 2013; 21:1563-70. [PMID: 24010715 PMCID: PMC3884077 DOI: 10.1016/j.str.2013.07.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 11/25/2022]
Abstract
As methods for analysis of biomolecular structure and dynamics using nuclear magnetic resonance spectroscopy (NMR) continue to advance, the resulting 3D structures, chemical shifts, and other NMR data are broadly impacting biology, chemistry, and medicine. Structure model assessment is a critical area of NMR methods development, and is an essential component of the process of making these structures accessible and useful to the wider scientific community. For these reasons, the Worldwide Protein Data Bank (wwPDB) has convened an NMR Validation Task Force (NMR-VTF) to work with wwPDB partners in developing metrics and policies for biomolecular NMR data harvesting, structure representation, and structure quality assessment. This paper summarizes the recommendations of the NMR-VTF, and lays the groundwork for future work in developing standards and metrics for biomolecular NMR structure quality assessment.
Collapse
Affiliation(s)
- Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|