1
|
Lou K, Zheng Y, Wang L, Zhou C, Wang J, Pan D, Wu Z, Cao J, Zhang H, Xia Q. Molten globule-state protein structure: Perspectives from food processing applications. Food Res Int 2024; 198:115318. [PMID: 39643361 DOI: 10.1016/j.foodres.2024.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
Under specific pretreatment or processing conditions, spheroprotein can be transformed into a molten globule state, a typical protein conformation with enhanced functionality. Analyzing the correlation between the formation of molten-globule structures and their quality and functional characteristics is critical for developing tailored processing features, especially for minimally processed future foods. This review outlines the mechanisms driving the formation of molten globule proteins through various processes including ultra-high pressure pretreatments, heating, ultrasonication, pH-shifting, macromolecular crowding and exposure to small-molecule denaturants. These treatments yield proteins that retain structural compactness and primary and secondary structures of their native forms, but with modified conformations and increased hydrophobicity. Common methods for characterizing molten globule proteins include fluorescence spectroscopy, circular dichroism spectroscopy, and nuclear magnetic resonance. The review also explores the application of molten globule proteins in food processing, highlighting their potential significance in advancing the field. The detailed elucidation and exploration of the microstructural transition and conformational features of molten globule proteins, together with their quantitative relationship with processibility of proteins from various sources, holds significant implications for optimizing protein-based food processing techniques and achieving targeted improvements in food quality.
Collapse
Affiliation(s)
- Kangshuai Lou
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changyu Zhou
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Daodong Pan
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China
| | - Zhen Wu
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- School of Food and Health, China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Qiang Xia
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Yu B, Bolik-Coulon N, Rangadurai AK, Kay LE, Iwahara J. Gadolinium-Based NMR Spin Relaxation Measurements of Near-Surface Electrostatic Potentials of Biomolecules. J Am Chem Soc 2024; 146:20788-20801. [PMID: 39028837 PMCID: PMC11295196 DOI: 10.1021/jacs.4c04433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/09/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024]
Abstract
NMR spectroscopy is an important tool for the measurement of the electrostatic properties of biomolecules. To this point, paramagnetic relaxation enhancements (PREs) of 1H nuclei arising from nitroxide cosolutes in biomolecular solutions have been used to measure effective near-surface electrostatic potentials (ϕENS) of proteins and nucleic acids. Here, we present a gadolinium (Gd)-based NMR method, exploiting Gd chelates with different net charges, for measuring ϕENS values and demonstrate its utility through applications to a number of biomolecular systems. The use of Gd-based cosolutes offers several advantages over nitroxides for ϕENS measurements. First, unlike nitroxide compounds, Gd chelates enable electrostatic potential measurements on oxidation-sensitive proteins that require reducing agents. Second, the large electron spin quantum number of Gd (7/2) results in notably larger PREs for Gd chelates when used at the same concentrations as nitroxide radicals. Thus, it is possible to measure ϕENS values exclusively from + and - charged compounds even for highly charged biomolecules, avoiding the use of neutral cosolutes that, as we further establish here, limits the accuracy of the measured electrostatic potentials. In addition, the smaller concentrations of cosolutes required minimize potential binding to sites on macromolecules. Fourth, the closer proximity of the paramagnetic center and charged groups within Gd chelates, in comparison to the corresponding nitroxide compounds, enables more accurate predictions of ϕENS potentials for cross-validation of the experimental results. The Gd-based method described here, thus, broadens the applicability of studies of biomolecular electrostatics using solution NMR spectroscopy.
Collapse
Affiliation(s)
- Binhan Yu
- Department
of Biochemistry & Molecular Biology, Sealy Center for Structural
Biology & Molecular Biophysics, University
of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| | - Nicolas Bolik-Coulon
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Atul K. Rangadurai
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Program
in Molecular Medicine, Hospital for Sick
Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Lewis E. Kay
- Department
of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Program
in Molecular Medicine, Hospital for Sick
Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Junji Iwahara
- Department
of Biochemistry & Molecular Biology, Sealy Center for Structural
Biology & Molecular Biophysics, University
of Texas Medical Branch, Galveston, Texas 77555-1068, United States
| |
Collapse
|
3
|
Jin H, Liu D, Ni Y, Wang H, Long D. Quantitative Ensemble Interpretation of Membrane Paramagnetic Relaxation Enhancement (mPRE) for Studying Membrane-Associated Intrinsically Disordered Proteins. J Am Chem Soc 2024; 146:791-800. [PMID: 38146836 DOI: 10.1021/jacs.3c10847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
An understanding of the functional role played by a membrane-associated intrinsically disordered protein (IDP) requires characterization of its heterogeneous conformations as well as its poses relative to the membranes, which is of great interest but technically challenging. Here, we explore the membrane paramagnetic relaxation enhancement (mPRE) for constructing ensembles of IDPs that dynamically associate with membrane mimetics incorporating spin-labeled lipids. To accurately interpret the mPRE Γ2 rates, both the dynamics of IDPs and spin probe molecules are taken into account, with the latter described by a weighted three-dimensional (3D) grid model built based on all-atom simulations. The IDP internal conformations, orientations, and immersion depths in lipid bilayers are comprehensively optimized in the Γ2-based ensemble modeling. Our approach is tested and validated on the example of POPG bicelle-bound disordered cytoplasmic domain of CD3ε (CD3εCD), a component of the T-cell receptor (TCR) complex. The mPRE-derived CD3εCD ensemble provides new insights into the IDP-membrane fuzzy association, in particular for the tyrosine-based signaling motif that plays a critical role in TCR signaling. The comparative analysis of the ensembles for wild-type CD3εCD and mutants that mimic the mono- and dual-phosphorylation effects suggests a delicate membrane regulatory mechanism for activation and inhibition of the TCR activity.
Collapse
Affiliation(s)
- Hong Jin
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dan Liu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yu Ni
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hui Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dong Long
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Wang Y, Zhou Y, Shi C, Liu J, Lv G, Huang H, Li S, Duan L, Zheng X, Liu Y, Zhou H, Wang Y, Li Z, Ding K, Sun P, Huang Y, Lu X, Zhang ZM. A toxin-deformation dependent inhibition mechanism in the T7SS toxin-antitoxin system of Gram-positive bacteria. Nat Commun 2022; 13:6434. [PMID: 36307446 PMCID: PMC9616950 DOI: 10.1038/s41467-022-34034-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Toxin EsaD secreted by some S. aureus strains through the type VII secretion system (T7SS) specifically kills those strains lacking the antitoxin EsaG. Here we report the structures of EsaG, the nuclease domain of EsaD and their complex, which together reveal an inhibition mechanism that relies on significant conformational change of the toxin. To inhibit EsaD, EsaG breaks the nuclease domain of EsaD protein into two independent fragments that, in turn, sandwich EsaG. The originally well-folded ββα-metal finger connecting the two fragments is stretched to become a disordered loop, leading to disruption of the catalytic site of EsaD and loss of nuclease activity. This mechanism is distinct from that of the other Type II toxin-antitoxin systems, which utilize an intrinsically disordered region on the antitoxins to cover the active site of the toxins. This study paves the way for developing therapeutic approaches targeting this antagonism.
Collapse
Affiliation(s)
- Yongjin Wang
- grid.258164.c0000 0004 1790 3548International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Yang Zhou
- grid.258164.c0000 0004 1790 3548International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Chaowei Shi
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Jiacong Liu
- grid.258164.c0000 0004 1790 3548International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Guohua Lv
- grid.258164.c0000 0004 1790 3548Division of Histology & Embryology, Medical College, Jinan University, Guangzhou, 510632 China
| | - Huisi Huang
- grid.258164.c0000 0004 1790 3548International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Shengrong Li
- grid.258164.c0000 0004 1790 3548International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Liping Duan
- grid.258164.c0000 0004 1790 3548International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Xinyi Zheng
- grid.258164.c0000 0004 1790 3548International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Yue Liu
- grid.258164.c0000 0004 1790 3548International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Haibo Zhou
- grid.258164.c0000 0004 1790 3548International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Yonghua Wang
- grid.79703.3a0000 0004 1764 3838School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Zhengqiu Li
- grid.258164.c0000 0004 1790 3548International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Ke Ding
- grid.258164.c0000 0004 1790 3548International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Pinghua Sun
- grid.258164.c0000 0004 1790 3548International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Yun Huang
- grid.5386.8000000041936877XDepartment of Physiology & Biophysics, Weill Cornell Medicine, New York, NY 10065 USA
| | - Xiaoyun Lu
- grid.258164.c0000 0004 1790 3548International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Zhi-Min Zhang
- grid.258164.c0000 0004 1790 3548International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632 China ,Guangdong Youmei Institute of Intelligent Bio-manufacturing, Foshan, Guangdong 528200 China
| |
Collapse
|
5
|
Lenard AJ, Mulder FAA, Madl T. Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:113-139. [PMID: 36496256 DOI: 10.1016/j.pnmrs.2022.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Solvent paramagnetic relaxation enhancement (sPRE) is a versatile nuclear magnetic resonance (NMR)-based method that allows characterization of the structure and dynamics of biomolecular systems through providing quantitative experimental information on solvent accessibility of NMR-active nuclei. Addition of soluble paramagnetic probes to the solution of a biomolecule leads to paramagnetic relaxation enhancement in a concentration-dependent manner. Here we review recent progress in the sPRE-based characterization of structural and dynamic properties of biomolecules and their complexes, and aim to deliver a comprehensive illustration of a growing number of applications of the method to various biological systems. We discuss the physical principles of sPRE measurements and provide an overview of available co-solute paramagnetic probes. We then explore how sPRE, in combination with complementary biophysical techniques, can further advance biomolecular structure determination, identification of interaction surfaces within protein complexes, and probing of conformational changes and low-population transient states, as well as deliver insights into weak, nonspecific, and transient interactions between proteins and co-solutes. In addition, we present examples of how the incorporation of solvent paramagnetic probes can improve the sensitivity of NMR experiments and discuss the prospects of applying sPRE to NMR metabolomics, drug discovery, and the study of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Aneta J Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria.
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center and Department of Chemistry, University of Aarhus, DK-8000 Aarhus, Denmark; Institute of Biochemistry, Johannes Kepler Universität Linz, 4040 Linz, Austria.
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
6
|
Im J, Lee J, Lee JH. Surface Accessibility of an Intrinsically Disordered Protein Probed by 2D Time-Resolved Laser-Assisted NMR Spectroscopy. J Am Chem Soc 2022; 144:17010-17021. [PMID: 36083135 DOI: 10.1021/jacs.2c06309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Probing the protein surface accessibility of different residues is a powerful way of characterizing the overall conformation of intrinsically disordered proteins (IDPs). We present a two-dimensional (2D) time-resolved photo-CIDNP (TR-CIDNP) experiment suitable for IDP analysis. Pulse stretching of high-power laser pulses, band-selective decoupling of 13Cα, and simultaneous application of radiofrequency and laser pulses were implemented to quantitatively analyze the IDP surface at ultrahigh resolution. Comparative analysis with other methods that measure protein surface accessibility validated the newly developed method and emphasized the importance of dye charge in photo-CIDNP. Using the neutral riboflavin dye, surface accessibilities were measured to be nearly identical for the four Tyr residues of α-synuclein (α-Syn), whose 1Hα-13Cα correlations were well-resolved in the 2D TR-CIDNP spectrum. Having confirmed the similarity between the time-resolved and steady-state photo-CIDNP results for α-Syn, we used the more sensitive latter method to show that divalent cations induce compaction of the C-terminal region and release of the N-terminal region of α-Syn. The photo-CIDNP method presented herein can be used as an orthogonal and independent method for investigating important biological processes associated with changes in the overall IDP conformation.
Collapse
Affiliation(s)
- Jonghyuk Im
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jongchan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jung Ho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea.,Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 16229, Korea
| |
Collapse
|
7
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
8
|
Czaplewski C, Gong Z, Lubecka EA, Xue K, Tang C, Liwo A. Recent Developments in Data-Assisted Modeling of Flexible Proteins. Front Mol Biosci 2022; 8:765562. [PMID: 35004845 PMCID: PMC8740120 DOI: 10.3389/fmolb.2021.765562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Many proteins can fold into well-defined conformations. However, intrinsically-disordered proteins (IDPs) do not possess a defined structure. Moreover, folded multi-domain proteins often digress into alternative conformations. Collectively, the conformational dynamics enables these proteins to fulfill specific functions. Thus, most experimental observables are averaged over the conformations that constitute an ensemble. In this article, we review the recent developments in the concept and methods for the determination of the dynamic structures of flexible peptides and proteins. In particular, we describe ways to extract information from nuclear magnetic resonance small-angle X-ray scattering (SAXS), and chemical cross-linking coupled with mass spectroscopy (XL-MS) measurements. All these techniques can be used to obtain ensemble-averaged restraints or to re-weight the simulated conformational ensembles.
Collapse
Affiliation(s)
| | - Zhou Gong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Emilia A Lubecka
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
| | - Kai Xue
- PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chun Tang
- PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
9
|
Delhommel F, Gabel F, Sattler M. Current approaches for integrating solution NMR spectroscopy and small-angle scattering to study the structure and dynamics of biomolecular complexes. J Mol Biol 2020; 432:2890-2912. [DOI: 10.1016/j.jmb.2020.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 01/24/2023]
|
10
|
Refining RNA solution structures with the integrative use of label-free paramagnetic relaxation enhancement NMR. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-00099-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
AbstractNMR structure calculation is inherently integrative, and can incorporate new experimental data as restraints. As RNAs have lower proton densities and are more conformational heterogenous than proteins, the refinement of RNA structures can benefit from additional types of restraints. Paramagnetic relaxation enhancement (PRE) provides distance information between a paramagnetic probe and protein or RNA nuclei. However, covalent conjugation of a paramagnetic probe is difficult for RNAs, thus limiting the use of PRE NMR for RNA structure characterization. Here, we show that the solvent PRE can be accurately measured for RNA labile imino protons, simply with the addition of an inert paramagnetic cosolute. Demonstrated on three RNAs that have increasingly complex topologies, we show that the incorporation of the solvent PRE restraints can significantly improve the precision and accuracy of RNA structures. Importantly, the solvent PRE data can be collected for RNAs without isotope enrichment. Thus, the solvent PRE method can work integratively with other biophysical techniques for better characterization of RNA structures.
Collapse
|
11
|
Hartlmüller C, Spreitzer E, Göbl C, Falsone F, Madl T. NMR characterization of solvent accessibility and transient structure in intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2019; 73:305-317. [PMID: 31297688 PMCID: PMC6692294 DOI: 10.1007/s10858-019-00248-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/11/2019] [Indexed: 05/12/2023]
Abstract
In order to understand the conformational behavior of intrinsically disordered proteins (IDPs) and their biological interaction networks, the detection of residual structure and long-range interactions is required. However, the large number of degrees of conformational freedom of disordered proteins require the integration of extensive sets of experimental data, which are difficult to obtain. Here, we provide a straightforward approach for the detection of residual structure and long-range interactions in IDPs under near-native conditions using solvent paramagnetic relaxation enhancement (sPRE). Our data indicate that for the general case of an unfolded chain, with a local flexibility described by the overwhelming majority of available combinations, sPREs of non-exchangeable protons can be accurately predicted through an ensemble-based fragment approach. We show for the disordered protein α-synuclein and disordered regions of the proteins FOXO4 and p53 that deviation from random coil behavior can be interpreted in terms of intrinsic propensity to populate local structure in interaction sites of these proteins and to adopt transient long-range structure. The presented modification-free approach promises to be applicable to study conformational dynamics of IDPs and other dynamic biomolecules in an integrative approach.
Collapse
Affiliation(s)
- Christoph Hartlmüller
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 87548, Garching, Germany
| | - Emil Spreitzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Institute of Molecular Biology & Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Christoph Göbl
- The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Fabio Falsone
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstrasse 1, 8010, Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Institute of Molecular Biology & Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
12
|
Iwahara J, Zandarashvili L, Kemme CA, Esadze A. NMR-based investigations into target DNA search processes of proteins. Methods 2018; 148:57-66. [PMID: 29753002 DOI: 10.1016/j.ymeth.2018.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022] Open
Abstract
To perform their function, transcription factors and DNA-repair/modifying enzymes must first locate their targets in the vast presence of nonspecific, but structurally similar sites on genomic DNA. Before reaching their targets, these proteins stochastically scan DNA and dynamically move from one site to another on DNA. Solution NMR spectroscopy provides unique atomic-level insights into the dynamic DNA-scanning processes, which are difficult to gain by any other experimental means. In this review, we provide an introductory overview on the NMR methods for the structural, dynamic, and kinetic investigations of target DNA search by proteins. We also discuss advantages and disadvantages of these NMR methods over other methods such as single-molecule techniques and biochemical approaches.
Collapse
Affiliation(s)
- Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, United States.
| | - Levani Zandarashvili
- Department of Biochemistry and Biophysics, University of Pennsylvania, United States
| | - Catherine A Kemme
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, United States
| | - Alexandre Esadze
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, United States
| |
Collapse
|
13
|
Gong Z, Schwieters CD, Tang C. Theory and practice of using solvent paramagnetic relaxation enhancement to characterize protein conformational dynamics. Methods 2018; 148:48-56. [PMID: 29656079 DOI: 10.1016/j.ymeth.2018.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/19/2018] [Accepted: 04/06/2018] [Indexed: 01/01/2023] Open
Abstract
Paramagnetic relaxation enhancement (PRE) has been established as a powerful tool in NMR for investigating protein structure and dynamics. The PRE is usually measured with a paramagnetic probe covalently attached at a specific site of an otherwise diamagnetic protein. The present work provides the numerical formulation for probing protein structure and conformational dynamics based on the solvent PRE (sPRE) measurement, using two alternative approaches. An inert paramagnetic cosolute randomly collides with the protein, and the resulting sPRE manifests the relative solvent exposure of protein nuclei. To make the back-calculated sPRE values most consistent with the observed values, the protein structure is either refined against the sPRE, or an ensemble of conformers is selected from a pre-generated library using a Monte Carlo algorithm. The ensemble structure comprises either N conformers of equal occupancy, or two conformers with different relative populations. We demonstrate the sPRE method using GB1, a structurally rigid protein, and calmodulin, a protein comprising two domains and existing in open and closed states. The sPRE can be computed with a stand-alone program for rapid evaluation, or with the invocation of a module in the latest release of the structure calculation software Xplor-NIH. As a label-free method, the sPRE measurement can be readily integrated with other biophysical techniques. The current limitations of the sPRE method are also discussed, regarding accurate measurement and theoretical calculation, model selection and suitable timescale.
Collapse
Affiliation(s)
- Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, and National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Charles D Schwieters
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Building 12A, Bethesda, MD 20892, United States
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, and National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China.
| |
Collapse
|
14
|
Öster C, Kosol S, Hartlmüller C, Lamley JM, Iuga D, Oss A, Org ML, Vanatalu K, Samoson A, Madl T, Lewandowski JR. Characterization of Protein-Protein Interfaces in Large Complexes by Solid-State NMR Solvent Paramagnetic Relaxation Enhancements. J Am Chem Soc 2017; 139:12165-12174. [PMID: 28780861 PMCID: PMC5590091 DOI: 10.1021/jacs.7b03875] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Solid-state NMR is becoming a viable
alternative for obtaining
information about structures and dynamics of large biomolecular complexes,
including ones that are not accessible to other high-resolution biophysical
techniques. In this context, methods for probing protein–protein
interfaces at atomic resolution are highly desirable. Solvent paramagnetic
relaxation enhancements (sPREs) proved to be a powerful method for
probing protein–protein interfaces in large complexes in solution
but have not been employed toward this goal in the solid state. We
demonstrate that 1H and 15N relaxation-based
sPREs provide a powerful tool for characterizing intermolecular interactions
in large assemblies in the solid state. We present approaches for
measuring sPREs in practically the entire range of magic angle spinning
frequencies used for biomolecular studies and discuss their benefits
and limitations. We validate the approach on crystalline GB1, with
our experimental results in good agreement with theoretical predictions.
Finally, we use sPREs to characterize protein–protein interfaces
in the GB1 complex with immunoglobulin G (IgG). Our results suggest
the potential existence of an additional binding site and provide
new insights into GB1:IgG complex structure that amend and revise
the current model available from studies with IgG fragments. We demonstrate
sPREs as a practical, widely applicable, robust, and very sensitive
technique for determining intermolecular interaction interfaces in
large biomolecular complexes in the solid state.
Collapse
Affiliation(s)
- Carl Öster
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Simone Kosol
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Christoph Hartlmüller
- Center for Integrated Protein Science, Department of Chemistry, Munich Technische Universität München , Lichtenbergstrasse 4, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München , Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jonathan M Lamley
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Dinu Iuga
- Department of Physics, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Andres Oss
- Institute of Health Technologies, Tallinn University of Technology , Akadeemia tee 15a, 19086 Tallinn, Estonia
| | - Mai-Liis Org
- Institute of Health Technologies, Tallinn University of Technology , Akadeemia tee 15a, 19086 Tallinn, Estonia
| | - Kalju Vanatalu
- Institute of Health Technologies, Tallinn University of Technology , Akadeemia tee 15a, 19086 Tallinn, Estonia
| | - Ago Samoson
- Institute of Health Technologies, Tallinn University of Technology , Akadeemia tee 15a, 19086 Tallinn, Estonia
| | - Tobias Madl
- Center for Integrated Protein Science, Department of Chemistry, Munich Technische Universität München , Lichtenbergstrasse 4, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München , Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz , Harrachgasse 21, 8010 Graz, Austria
| | - Józef R Lewandowski
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
15
|
Gong Z, Gu XH, Guo DC, Wang J, Tang C. Protein Structural Ensembles Visualized by Solvent Paramagnetic Relaxation Enhancement. Angew Chem Int Ed Engl 2016; 56:1002-1006. [DOI: 10.1002/anie.201609830] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/09/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| | - Xin-Hua Gu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| | - Da-Chuan Guo
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| | - Jin Wang
- Department of Physics and Astronomy and Department of Chemistry; State University of New York at Stony Brook; Stony Brook New York 11794 USA
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| |
Collapse
|
16
|
Gong Z, Gu XH, Guo DC, Wang J, Tang C. Protein Structural Ensembles Visualized by Solvent Paramagnetic Relaxation Enhancement. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| | - Xin-Hua Gu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| | - Da-Chuan Guo
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| | - Jin Wang
- Department of Physics and Astronomy and Department of Chemistry; State University of New York at Stony Brook; Stony Brook New York 11794 USA
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| |
Collapse
|