1
|
Waterson AG. Switching It up with New KRAS Inhibitors. J Med Chem 2025; 68:9126-9128. [PMID: 40261144 PMCID: PMC12067428 DOI: 10.1021/acs.jmedchem.5c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Alongside significant recent advancements in drugging an historically notorious oncogene, scientists continue to uncover new ways to target KRAS. This viewpoint summarizes the newly reported discovery of a novel chemical template that features the ability to tailor inhibition to different activation states of nucleotide-bound KRAS from the same scaffold.
Collapse
Affiliation(s)
- Alex G. Waterson
- Departments
of Pharmacology and Chemistry, Vanderbilt
University School of Medicine, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
| |
Collapse
|
2
|
Fesik SW. Drugging Challenging Cancer Targets Using Fragment-Based Methods. Chem Rev 2025; 125:3586-3594. [PMID: 40043012 PMCID: PMC11951080 DOI: 10.1021/acs.chemrev.4c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
There are many highly validated cancer targets that are difficult or impossible to drug due to the absence of suitable pockets that can bind small molecules. Fragment-based methods have been shown to be a useful approach for identifying ligands to proteins that were previously thought to be undruggable. In this review, I will give an overview of fragment-based ligand discovery and provide examples from our own work on how fragment-based methods were used to discover high affinity ligands for challenging cancer drug targets.
Collapse
Affiliation(s)
- Stephen W. Fesik
- Department of Biochemistry,
Chemistry, and Pharmacology, Vanderbilt
University, Nashville, Tennessee 37235 United States
| |
Collapse
|
3
|
Li N, Liu CF, Zhang W, Rao GW. A New Dawn for Targeted Cancer Therapy: Small Molecule Covalent Binding Inhibitor Targeting K-Ras (G12C). Curr Med Chem 2025; 32:647-677. [PMID: 37936461 DOI: 10.2174/0109298673258913231019113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
K-Ras is a frequently mutated oncogene in human malignancies, and the development of inhibitors targeting various oncogenic K-Ras mutant proteins is a major challenge in targeted cancer therapy, especially K-Ras(G12C) is the most common mutant, which occurs in pancreatic ductal adenocarcinoma (PDAC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and other highly prevalent malignancies. In recent years, significant progress has been made in developing small molecule covalent inhibitors targeting K-Ras(G12C), thanks to the production of nucleophilic cysteine by the G12C mutant, breaking the "spell" that K-Ras protein cannot be used as a drug target. With the successful launch of sotorasib and adagrasib, the development of small molecule inhibitors targeting various K-Ras mutants has continued to gain momentum. In recent years, with the popularization of highly sensitive surface plasmon resonance (SPR) technology, fragment-based drug design strategies have shown great potential in the development of small molecule inhibitors targeting K-Ras(G12C), but with the increasing number of clinically reported acquired drug resistance, addressing inhibitor resistance has gradually become the focus of this field, indirectly indicating that such small molecule inhibitors still the potential for the development of these small molecule inhibitors are also indirectly indicated. This paper traces the development of small molecule covalent inhibitors targeting K-Ras(G12C), highlighting and analyzing the structural evolution and optimization process of each series of inhibitors and the previous inhibitor design methods and strategies, as well as their common problems and general solutions, in order to provide inspiration and help to the subsequent researchers.
Collapse
Affiliation(s)
- Na Li
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P.R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
4
|
Chen Y, Liu QP, Xie H, Ding J. From bench to bedside: current development and emerging trend of KRAS-targeted therapy. Acta Pharmacol Sin 2024; 45:686-703. [PMID: 38049578 PMCID: PMC10943119 DOI: 10.1038/s41401-023-01194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is the most frequently mutated oncogene in human cancers with mutations predominantly occurring in codon 12. These mutations disrupt the normal function of KRAS by interfering with GTP hydrolysis and nucleotide exchange activity, making it prone to the GTP-bound active state, thus leading to sustained activation of downstream pathways. Despite decades of research, there has been no progress in the KRAS drug discovery until the groundbreaking discovery of covalently targeting the KRASG12C mutation in 2013, which led to revolutionary changes in KRAS-targeted therapy. So far, two small molecule inhibitors sotorasib and adagrasib targeting KRASG12C have received accelerated approval for the treatment of non-small cell lung cancer (NSCLC) harboring KRASG12C mutations. In recent years, rapid progress has been achieved in the KRAS-targeted therapy field, especially the exploration of KRASG12C covalent inhibitors in other KRASG12C-positive malignancies, novel KRAS inhibitors beyond KRASG12C mutation or pan-KRAS inhibitors, and approaches to indirectly targeting KRAS. In this review, we provide a comprehensive overview of the molecular and mutational characteristics of KRAS and summarize the development and current status of covalent inhibitors targeting the KRASG12C mutation. We also discuss emerging promising KRAS-targeted therapeutic strategies, with a focus on mutation-specific and direct pan-KRAS inhibitors and indirect KRAS inhibitors through targeting the RAS activation-associated proteins Src homology-2 domain-containing phosphatase 2 (SHP2) and son of sevenless homolog 1 (SOS1), and shed light on current challenges and opportunities for drug discovery in this field.
Collapse
Affiliation(s)
- Yi Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiu-Pei Liu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Chemical and Environment Engineering, Science and Engineering Building, The University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Zhao D, Liu Y, Yi F, Zhao X, Lu K. Recent advances in the development of inhibitors targeting KRAS-G12C and its related pathways. Eur J Med Chem 2023; 259:115698. [PMID: 37542991 DOI: 10.1016/j.ejmech.2023.115698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
The RAS gene, also known as the mouse sarcoma virus, includes three genes (KRAS, HRAS, and NRAS) that are associated with human tumors. Among them, KRAS has the highest incidence of mutations in cancer, accounting for around 80% of cases. At the molecular level, the RAS gene plays a regulatory role in transcription and translation, while at the cellular level, it affects cell proliferation and migration, making it crucial for cancer development. In 2021, the FDA approved AMG510, the first direct inhibitor targeting the KRAS-G12C mutation, which has shown tumor regression, prolonged survival, and low off-target activity. However, with the increase of drug resistance, a single inhibitor is no longer sufficient to achieve the desired effect on tumors. Therefore, a large number of other highly efficient inhibitors are being developed at different stages. This article provides an overview of the mechanism of action targeting KRAS-G12C in the KRASGTP-KRASGDP cycle pathway, as well as the structure-activity relationship, structure optimization, and biological activity effects of inhibitors that target the upstream and downstream pathways, or combination therapy.
Collapse
Affiliation(s)
- Dongqiang Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yu Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Fengchao Yi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
6
|
Larda S, Ayotte Y, Denk MM, Coote P, Heffron G, Bendahan D, Shahout F, Girard N, Iddir M, Bouchard P, Bilodeau F, Woo S, Farmer LJ, LaPlante SR. Robust Strategy for Hit-to-Lead Discovery: NMR for SAR. J Med Chem 2023; 66:13416-13427. [PMID: 37732695 PMCID: PMC10578354 DOI: 10.1021/acs.jmedchem.3c00656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Indexed: 09/22/2023]
Abstract
Establishing robust structure-activity relationships (SARs) is key to successful drug discovery campaigns, yet it often remains elusive due to screening and hit validation artifacts (false positives and false negatives), which frequently result in unproductive downstream expenditures of time and resources. To address this issue, we developed an integrative biophysics-driven strategy that expedites hit-to-lead discovery, mitigates false positives/negatives and common hit validation errors, and provides a robust approach to obtaining accurate binding and affinity measurements. The advantage of this method is that it vastly improves the clarity and reproducibility for affinity-driven SAR by monitoring and eliminating confounding factors. We demonstrate the ease at which high-quality micromolar binders can be generated from the initial millimolar fragment screening hits against an "undruggable" protein target, HRas.
Collapse
Affiliation(s)
| | - Yann Ayotte
- NMX
Research and Solutions Inc., Laval H7V 5B7, Canada
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
| | - Maria M. Denk
- NMX
Research and Solutions Inc., Laval H7V 5B7, Canada
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
| | - Paul Coote
- NMX
Research and Solutions Inc., Laval H7V 5B7, Canada
- Harvard
Medical School, Boston, Massachusetts 02115, United States
- Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
| | - Gregory Heffron
- NMX
Research and Solutions Inc., Laval H7V 5B7, Canada
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - David Bendahan
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
| | - Fatma Shahout
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
| | | | - Mustapha Iddir
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
| | | | | | - Simon Woo
- NMX
Research and Solutions Inc., Laval H7V 5B7, Canada
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
| | - Luc J. Farmer
- NMX
Research and Solutions Inc., Laval H7V 5B7, Canada
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
| | - Steven R. LaPlante
- NMX
Research and Solutions Inc., Laval H7V 5B7, Canada
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Orgován Z, Péczka N, Petri L, Ábrányi-Balogh P, Ranđelović I, Tóth S, Szakács G, Nyíri K, Vértessy B, Pálfy G, Vida I, Perczel A, Tóvári J, Keserű GM. Covalent fragment mapping of KRas G12C revealed novel chemotypes with in vivo potency. Eur J Med Chem 2023; 250:115212. [PMID: 36842271 DOI: 10.1016/j.ejmech.2023.115212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
G12C mutant KRas is considered druggable by allele-specific covalent inhibitors due to the nucleophilic character of the oncogenic mutant cysteine at position 12. Discovery of these inhibitors requires the optimization of both covalent and noncovalent interactions. Here, we report covalent fragment screening of our electrophilic fragment library of diverse non-covalent scaffolds equipped with 40 different electrophilic functionalities to identify fragments as suitable starting points targeting Cys12. Screening the library against KRasG12C using Ellman's free thiol assay, followed by protein NMR and cell viability assays, resulted in two potential inhibitor chemotypes. Characterization of these scaffolds in in vitro cellular- and in vivo xenograft models revealed them as promising starting points for covalent drug discovery programs.
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, and National Drug Discovery and Development Laboratory, Budapest, Hungary
| | - Nikolett Péczka
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, and National Drug Discovery and Development Laboratory, Budapest, Hungary; Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, and National Drug Discovery and Development Laboratory, Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, and National Drug Discovery and Development Laboratory, Budapest, Hungary; Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | | | - Szilárd Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Kinga Nyíri
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Hungary
| | - Beáta Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Hungary
| | - Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University, Budapest, Hungary
| | - István Vida
- Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University, Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Budapest, Hungary; MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, and National Drug Discovery and Development Laboratory, Budapest, Hungary; Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary.
| |
Collapse
|
8
|
Bröker J, Waterson AG, Smethurst C, Kessler D, Böttcher J, Mayer M, Gmaschitz G, Phan J, Little A, Abbott JR, Sun Q, Gmachl M, Rudolph D, Arnhof H, Rumpel K, Savarese F, Gerstberger T, Mischerikow N, Treu M, Herdeis L, Wunberg T, Gollner A, Weinstabl H, Mantoulidis A, Krämer O, McConnell DB, W. Fesik S. Fragment Optimization of Reversible Binding to the Switch II Pocket on KRAS Leads to a Potent, In Vivo Active KRAS G12C Inhibitor. J Med Chem 2022; 65:14614-14629. [PMID: 36300829 PMCID: PMC9661478 DOI: 10.1021/acs.jmedchem.2c01120] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 12/02/2022]
Abstract
Activating mutations in KRAS are the most frequent oncogenic alterations in cancer. The oncogenic hotspot position 12, located at the lip of the switch II pocket, offers a covalent attachment point for KRASG12C inhibitors. To date, KRASG12C inhibitors have been discovered by first covalently binding to the cysteine at position 12 and then optimizing pocket binding. We report on the discovery of the in vivo active KRASG12C inhibitor BI-0474 using a different approach, in which small molecules that bind reversibly to the switch II pocket were identified and then optimized for non-covalent binding using structure-based design. Finally, the Michael acceptor containing warhead was attached. Our approach offers not only an alternative approach to discovering KRASG12C inhibitors but also provides a starting point for the discovery of inhibitors against other oncogenic KRAS mutants.
Collapse
Affiliation(s)
- Joachim Bröker
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Alex G. Waterson
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Chris Smethurst
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Dirk Kessler
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Jark Böttcher
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Moriz Mayer
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Gerhard Gmaschitz
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Jason Phan
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Andrew Little
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Jason R. Abbott
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Qi Sun
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| | - Michael Gmachl
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Dorothea Rudolph
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Heribert Arnhof
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Klaus Rumpel
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Fabio Savarese
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Thomas Gerstberger
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Nikolai Mischerikow
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Matthias Treu
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Lorenz Herdeis
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Tobias Wunberg
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Andreas Gollner
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Harald Weinstabl
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Andreas Mantoulidis
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Oliver Krämer
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Darryl B. McConnell
- Boehringer
Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Stephen W. Fesik
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland Avenue, 607 Light Hall, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
9
|
McAulay K, Bilsland A, Bon M. Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery. Pharmaceuticals (Basel) 2022; 15:1366. [PMID: 36355538 PMCID: PMC9694498 DOI: 10.3390/ph15111366] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 09/27/2023] Open
Abstract
Fragment based drug discovery has long been used for the identification of new ligands and interest in targeted covalent inhibitors has continued to grow in recent years, with high profile drugs such as osimertinib and sotorasib gaining FDA approval. It is therefore unsurprising that covalent fragment-based approaches have become popular and have recently led to the identification of novel targets and binding sites, as well as ligands for targets previously thought to be 'undruggable'. Understanding the properties of such covalent fragments is important, and characterizing and/or predicting reactivity can be highly useful. This review aims to discuss the requirements for an electrophilic fragment library and the importance of differing warhead reactivity. Successful case studies from the world of drug discovery are then be examined.
Collapse
Affiliation(s)
- Kirsten McAulay
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Centre for Targeted Protein Degradation, University of Dundee, Nethergate, Dundee DD1 4HN, UK
| | - Alan Bilsland
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Marta Bon
- Cancer Research Horizons—Therapeutic Innovation, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, UK
| |
Collapse
|
10
|
Bon M, Bilsland A, Bower J, McAulay K. Fragment-based drug discovery-the importance of high-quality molecule libraries. Mol Oncol 2022; 16:3761-3777. [PMID: 35749608 PMCID: PMC9627785 DOI: 10.1002/1878-0261.13277] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022] Open
Abstract
Fragment-based drug discovery (FBDD) is now established as a complementary approach to high-throughput screening (HTS). Contrary to HTS, where large libraries of drug-like molecules are screened, FBDD screens involve smaller and less complex molecules which, despite a low affinity to protein targets, display more 'atom-efficient' binding interactions than larger molecules. Fragment hits can, therefore, serve as a more efficient start point for subsequent optimisation, particularly for hard-to-drug targets. Since the number of possible molecules increases exponentially with molecular size, small fragment libraries allow for a proportionately greater coverage of their respective 'chemical space' compared with larger HTS libraries comprising larger molecules. However, good library design is essential to ensure optimal chemical and pharmacophore diversity, molecular complexity, and physicochemical characteristics. In this review, we describe our views on fragment library design, and on what constitutes a good fragment from a medicinal and computational chemistry perspective. We highlight emerging chemical and computational technologies in FBDD and discuss strategies for optimising fragment hits. The impact of novel FBDD approaches is already being felt, with the recent approval of the covalent KRASG12C inhibitor sotorasib highlighting the utility of FBDD against targets that were long considered undruggable.
Collapse
Affiliation(s)
- Marta Bon
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| | - Alan Bilsland
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| | - Justin Bower
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| | - Kirsten McAulay
- Cancer Research HorizonsCancer Research UK Beatson InstituteGlasgowUK
| |
Collapse
|
11
|
Yin G, Lv G, Zhang J, Jiang H, Lai T, Yang Y, Ren Y, Wang J, Yi C, Chen H, Huang Y, Xiao C. Early-stage structure-based drug discovery for small GTPases by NMR spectroscopy. Pharmacol Ther 2022; 236:108110. [PMID: 35007659 DOI: 10.1016/j.pharmthera.2022.108110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
Small GTPase or Ras superfamily, including Ras, Rho, Rab, Ran and Arf, are fundamental in regulating a wide range of cellular processes such as growth, differentiation, migration and apoptosis. They share structural and functional similarities for binding guanine nucleotides and hydrolyzing GTP. Dysregulations of Ras proteins are involved in the pathophysiology of multiple human diseases, however there is still a stringent need for effective treatments targeting these proteins. For decades, small GTPases were recognized as 'undruggable' targets due to their complex regulatory mechanisms and lack of deep pockets for ligand binding. NMR has been critical in deciphering the structural and dynamic properties of the switch regions that are underpinning molecular switch functions of small GTPases, which pave the way for developing new effective inhibitors. The recent progress of drug or lead molecule development made for small GTPases profoundly delineated how modern NMR techniques reshape the field of drug discovery. In this review, we will summarize the progress of structural and dynamic studies of small GTPases, the NMR techniques developed for structure-based drug screening and their applications in early-stage drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Guohua Lv
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Jerry Zhang
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Lai
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Yushan Yang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yong Ren
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Chenju Yi
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, Zhejiang Province 311215, PR China
| | - Yun Huang
- Howard Hughes Medical Institute, Chevy Chase 20815, MD, USA; Department of Physiology & Biophysics, Weill Cornell Medicine, New York 10065, NY, USA.
| | - Chaoni Xiao
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
12
|
Chen J, Wang L, Wang W, Sun H, Pang L, Bao H. Conformational transformation of switch domains in GDP/K-Ras induced by G13 mutants: An investigation through Gaussian accelerated molecular dynamics simulations and principal component analysis. Comput Biol Med 2021; 135:104639. [PMID: 34247129 DOI: 10.1016/j.compbiomed.2021.104639] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Mutations in K-Ras are involved in a large number of all human cancers, thus, K-Ras is regarded as a promising target for anticancer drug design. Understanding the target roles of K-Ras is important for providing insights on the molecular mechanism underlying the conformational transformation of the switch domains in K-Ras due to mutations. In this study, multiple replica Gaussian accelerated molecular (MR-GaMD) simulations and principal component analysis (PCA) were applied to probe the effect of G13A, G13D and G13I mutations on conformational transformations of the switch domains in GDP-associated K-Ras. The results suggest that G13A, G13D and G13I enhance the structural flexibility of the switch domains, change the correlated motion modes of the switch domains and strengthen the total motion strength of K-Ras compared with the wild-type (WT) K-Ras. Free energy landscape analyses not only show that the switch domains of the GDP-bound inactive K-Ras mainly exist as a closed state but also indicate that mutations evidently alter the free energy profile of K-Ras and affect the conformational transformation of the switch domains between the closed and open states. Analyses of hydrophobic interaction contacts and hydrogen bonding interactions show that the mutations scarcely change the interaction network of GDP with K-Ras and only disturb the interaction of GDP with the switch (SW1). In summary, two newly introduced mutations, G13A and G13I, play similar adjustment roles in the conformational transformations of two switch domains to G13D and are possibly utilized to tune the activity of K-Ras and the binding of guanine nucleotide exchange factors.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China.
| | - Lifei Wang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
13
|
Marshall CB, KleinJan F, Gebregiworgis T, Lee KY, Fang Z, Eves BJ, Liu NF, Gasmi-Seabrook GMC, Enomoto M, Ikura M. NMR in integrated biophysical drug discovery for RAS: past, present, and future. JOURNAL OF BIOMOLECULAR NMR 2020; 74:531-554. [PMID: 32804298 DOI: 10.1007/s10858-020-00338-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Mutations in RAS oncogenes occur in ~ 30% of human cancers, with KRAS being the most frequently altered isoform. RAS proteins comprise a conserved GTPase domain and a C-terminal lipid-modified tail that is unique to each isoform. The GTPase domain is a 'switch' that regulates multiple signaling cascades that drive cell growth and proliferation when activated by binding GTP, and the signal is terminated by GTP hydrolysis. Oncogenic RAS mutations disrupt the GTPase cycle, leading to accumulation of the activated GTP-bound state and promoting proliferation. RAS is a key target in oncology, however it lacks classic druggable pockets and has been extremely challenging to target. RAS signaling has thus been targeted indirectly, by harnessing key downstream effectors as well as upstream regulators, or disrupting the proper membrane localization required for signaling, by inhibiting either lipid modification or 'carrier' proteins. As a small (20 kDa) protein with multiple conformers in dynamic equilibrium, RAS is an excellent candidate for NMR-driven characterization and screening for direct inhibitors. Several molecules have been discovered that bind RAS and stabilize shallow pockets through conformational selection, and recent compounds have achieved substantial improvements in affinity. NMR-derived insight into targeting the RAS-membrane interface has revealed a new strategy to enhance the potency of small molecules, while another approach has been development of peptidyl inhibitors that bind through large interfaces rather than deep pockets. Remarkable progress has been made with mutation-specific covalent inhibitors that target the thiol of a G12C mutant, and these are now in clinical trials. Here we review the history of RAS inhibitor development and highlight the utility of NMR and integrated biophysical approaches in RAS drug discovery.
Collapse
Affiliation(s)
- Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.
| | - Fenneke KleinJan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Ki-Young Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Zhenhao Fang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Ben J Eves
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Ningdi F Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | | | - Masahiro Enomoto
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
14
|
Making NSCLC Crystal Clear: How Kinase Structures Revolutionized Lung Cancer Treatment. CRYSTALS 2020. [DOI: 10.3390/cryst10090725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The parallel advances of different scientific fields provide a contemporary scenario where collaboration is not a differential, but actually a requirement. In this context, crystallography has had a major contribution on the medical sciences, providing a “face” for targets of diseases that previously were known solely by name or sequence. Worldwide, cancer still leads the number of annual deaths, with 9.6 million associated deaths, with a major contribution from lung cancer and its 1.7 million deaths. Since the relationship between cancer and kinases was unraveled, these proteins have been extensively explored and became associated with drugs that later attained blockbuster status. Crystallographic structures of kinases related to lung cancer and their developed and marketed drugs provided insight on their conformation in the absence or presence of small molecules. Notwithstanding, these structures were also of service once the initially highly successful drugs started to lose their effectiveness in the emergence of mutations. This review focuses on a subclassification of lung cancer, non-small cell lung cancer (NSCLC), and major oncogenic driver mutations in kinases, and how crystallographic structures can be used, not only to provide awareness of the function and inhibition of these mutations, but also how these structures can be used in further computational studies aiming at addressing these novel mutations in the field of personalized medicine.
Collapse
|
15
|
Bancet A, Raingeval C, Lomberget T, Le Borgne M, Guichou JF, Krimm I. Fragment Linking Strategies for Structure-Based Drug Design. J Med Chem 2020; 63:11420-11435. [DOI: 10.1021/acs.jmedchem.0c00242] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexandre Bancet
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 69373 Lyon Cedex 8, France
- Centre de RMN à Très Hauts Champs, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Claire Raingeval
- Centre de RMN à Très Hauts Champs, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Thierry Lomberget
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 69373 Lyon Cedex 8, France
| | - Marc Le Borgne
- EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie, ISPB, SFR Santé Lyon-Est CNRS UMS3453, INSERM US7, Université de Lyon, Université Claude Bernard Lyon 1, 69373 Lyon Cedex 8, France
| | | | - Isabelle Krimm
- Centre de RMN à Très Hauts Champs, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS, 5 Rue de la Doua, F-69100 Villeurbanne, France
- Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
16
|
Gray JL, von Delft F, Brennan PE. Targeting the Small GTPase Superfamily through Their Regulatory Proteins. Angew Chem Int Ed Engl 2020; 59:6342-6366. [PMID: 30869179 PMCID: PMC7204875 DOI: 10.1002/anie.201900585] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/11/2019] [Indexed: 12/11/2022]
Abstract
The Ras superfamily of small GTPases are guanine-nucleotide-dependent switches essential for numerous cellular processes. Mutations or dysregulation of these proteins are associated with many diseases, but unsuccessful attempts to target the small GTPases directly have resulted in them being classed as "undruggable". The GTP-dependent signaling of these proteins is controlled by their regulators; guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in the Rho and Rab subfamilies, guanine nucleotide dissociation inhibitors (GDIs). This review covers the recent small molecule and biologics strategies to target the small GTPases through their regulators. It seeks to critically re-evaluate recent chemical biology practice, such as the presence of PAINs motifs and the cell-based readout using compounds that are weakly potent or of unknown specificity. It highlights the vast scope of potential approaches for targeting the small GTPases in the future through their regulatory proteins.
Collapse
Affiliation(s)
- Janine L. Gray
- Structural Genomics ConsortiumUniversity of Oxford, NDMRBOld Road CampusOxfordOX3 7DQUK
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOld Road CampusOxfordOX3 7FZUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0QXUK
| | - Frank von Delft
- Structural Genomics ConsortiumUniversity of Oxford, NDMRBOld Road CampusOxfordOX3 7DQUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0QXUK
- Department of BiochemistryUniversity of JohannesburgAuckland Park2006South Africa
| | - Paul E. Brennan
- Structural Genomics ConsortiumUniversity of Oxford, NDMRBOld Road CampusOxfordOX3 7DQUK
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOld Road CampusOxfordOX3 7FZUK
- Alzheimer's Research (UK) Oxford Drug Discovery InstituteNuffield Department of MedicineUniversity of OxfordOxfordOX3 7FZUK
| |
Collapse
|
17
|
Keeley A, Petri L, Ábrányi-Balogh P, Keserű GM. Covalent fragment libraries in drug discovery. Drug Discov Today 2020; 25:983-996. [PMID: 32298798 DOI: 10.1016/j.drudis.2020.03.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/07/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
Targeted covalent inhibitors and chemical probes have become integral parts of drug discovery approaches. Given the advantages of fragment-based drug discovery, screening electrophilic fragments emerged as a promising alternative to discover and validate novel targets and to generate viable chemical starting points even for targets that are barely tractable. In this review, we present recent principles and considerations in the design of electrophilic fragment libraries from the selection of the appropriate covalent warhead through the design of the covalent fragment to the compilation of the library. We then summarize recent screening methodologies of covalent fragments against surrogate models, proteins, and the whole proteome, or living cells. Finally, we highlight recent drug discovery applications of covalent fragment libraries.
Collapse
Affiliation(s)
- Aaron Keeley
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
18
|
Gray JL, Delft F, Brennan PE. Targeting der kleinen GTPasen über ihre regulatorischen Proteine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201900585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Janine L. Gray
- Structural Genomics ConsortiumUniversity of Oxford, NDMRB Old Road Campus Oxford OX3 7DQ Großbritannien
- Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford Old Road Campus Oxford OX3 7FZ Großbritannien
- Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 0QX Großbritannien
| | - Frank Delft
- Structural Genomics ConsortiumUniversity of Oxford, NDMRB Old Road Campus Oxford OX3 7DQ Großbritannien
- Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 0QX Großbritannien
- Department of BiochemistryUniversity of Johannesburg Auckland Park 2006 Südafrika
| | - Paul E. Brennan
- Structural Genomics ConsortiumUniversity of Oxford, NDMRB Old Road Campus Oxford OX3 7DQ Großbritannien
- Target Discovery InstituteNuffield Department of MedicineUniversity of Oxford Old Road Campus Oxford OX3 7FZ Großbritannien
- Alzheimer's Research (UK) Oxford Drug Discovery InstituteNuffield Department of MedicineUniversity of Oxford Oxford OX3 7FZ Großbritannien
| |
Collapse
|
19
|
Pantsar T. The current understanding of KRAS protein structure and dynamics. Comput Struct Biotechnol J 2019; 18:189-198. [PMID: 31988705 PMCID: PMC6965201 DOI: 10.1016/j.csbj.2019.12.004] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 01/10/2023] Open
Abstract
One of the most common drivers in human cancer is the mutant KRAS protein. Not so long ago KRAS was considered as an undruggable oncoprotein. After a long struggle, however, we finally see some light at the end of the tunnel as promising KRAS targeted therapies are in or approaching clinical trials. In recent years, together with the promising progress in RAS drug discovery, our understanding of KRAS has increased tremendously. This progress has been accompanied with a resurgence of publicly available KRAS structures, which were limited to nine structures less than ten years ago. Furthermore, the ever-increasing computational capacity has made biologically relevant timescales accessible, enabling molecular dynamics (MD) simulations to study the dynamics of KRAS protein in more detail at the atomistic level. In this minireview, my aim is to provide the reader an overview of the publicly available KRAS structural data, insights to conformational dynamics revealed by experiments and what we have learned from MD simulations. Also, I will discuss limitations of the current data and provide suggestions for future research related to KRAS, which would fill out the existing gaps in our knowledge and provide guidance in deciphering this enigmatic oncoprotein.
Collapse
Affiliation(s)
- Tatu Pantsar
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| |
Collapse
|
20
|
Matsumoto S, Hiraga T, Hayashi Y, Yoshikawa Y, Tsuda C, Araki M, Neya M, Shima F, Kataoka T. Molecular Basis for Allosteric Inhibition of GTP-Bound H-Ras Protein by a Small-Molecule Compound Carrying a Naphthalene Ring. Biochemistry 2018; 57:5350-5358. [PMID: 30141910 DOI: 10.1021/acs.biochem.8b00680] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ras oncogene products (H-Ras, K-Ras, and N-Ras) have been regarded as some of the most promising targets for anticancer drug discovery because their activating mutations are frequently found in human cancers. Nonetheless, molecular targeted therapy for them is currently unavailable. Here, we report the discovery of a small-molecule compound carrying a naphthalene ring, named KBFM123, which binds to the GTP-bound form of H-Ras. The solution structure of its complex with the guanosine 5'-(β,γ-imide) triphosphate-bound form of H-RasT35S (H-RasT35S·GppNHp) indicates that the naphthalene ring of KBFM123 interacts directly with a hydrophobic pocket located between switch I and switch II and allosterically inhibits the effector interaction by inducing conformational changes in switch I and its flanking region in strand β2, which are directly involved in recognition of the effector molecules, including c-Raf-1. In particular, Asp38 of H-Ras, a crucial residue for the interaction with c-Raf-1 via the formation of a salt bridge with Arg89 of the Ras-binding domain (RBD) of c-Raf-1, shows a drastic conformational change: its side chain orients toward the opposite direction. Consistent with these results, KBFM123 exhibits an activity to inhibit, albeit weakly, the association of H-RasG12V·GppNHp with the c-Raf-1 RBD. The binding of the naphthalene ring to the hydrophobic pocket of H-RasT35S·GppNHp is further supported by nuclear magnetic resonance analyses showing that two other naphthalene-containing compounds with distinct structures also exhibit similar binding properties with KBFM123. These results indicate that the naphthalene ring could become a promising scaffold for the development of Ras inhibitors.
Collapse
Affiliation(s)
- Shigeyuki Matsumoto
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology , Kobe University Graduate School of Medicine , 7-5-1 Kusunoki-cho , Chuo-ku, Kobe 650-0017 , Japan
| | - Toshiki Hiraga
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology , Kobe University Graduate School of Medicine , 7-5-1 Kusunoki-cho , Chuo-ku, Kobe 650-0017 , Japan
| | - Yuki Hayashi
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology , Kobe University Graduate School of Medicine , 7-5-1 Kusunoki-cho , Chuo-ku, Kobe 650-0017 , Japan
| | - Yoko Yoshikawa
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology , Kobe University Graduate School of Medicine , 7-5-1 Kusunoki-cho , Chuo-ku, Kobe 650-0017 , Japan
| | - Chiemi Tsuda
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology , Kobe University Graduate School of Medicine , 7-5-1 Kusunoki-cho , Chuo-ku, Kobe 650-0017 , Japan
| | - Mitsugu Araki
- Medicinal Frontier Department , KNC Laboratories Company, Ltd. , 1-1-1 Murotani , Nishi-ku, Kobe 651-2241 , Japan
| | - Masahiro Neya
- Medicinal Frontier Department , KNC Laboratories Company, Ltd. , 1-1-1 Murotani , Nishi-ku, Kobe 651-2241 , Japan
| | - Fumi Shima
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology , Kobe University Graduate School of Medicine , 7-5-1 Kusunoki-cho , Chuo-ku, Kobe 650-0017 , Japan
| | - Tohru Kataoka
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology , Kobe University Graduate School of Medicine , 7-5-1 Kusunoki-cho , Chuo-ku, Kobe 650-0017 , Japan
| |
Collapse
|
21
|
Structures of REV1 UBM2 Domain Complex with Ubiquitin and with a Small-Molecule that Inhibits the REV1 UBM2–Ubiquitin Interaction. J Mol Biol 2018; 430:2857-2872. [DOI: 10.1016/j.jmb.2018.05.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/25/2023]
|
22
|
Abstract
The high prevalence of KRAS mutations in human cancers and the lack of effective treatments for patients ranks KRAS among the most highly sought-after targets for preclinical oncologists. Pharmaceutical companies and academic laboratories have tried for decades to identify small molecule inhibitors of oncogenic KRAS proteins, but little progress has been made and many have labeled KRAS undruggable. However, recent progress in in silico screening, fragment-based drug design, disulfide tethered screening, and some emerging themes in RAS biology have caused the field to reconsider previously held notions about targeting KRAS. This review will cover some of the historical efforts to identify RAS inhibitors, and some of the most promising efforts currently being pursued.
Collapse
Affiliation(s)
- Matthew Holderfield
- NCI-Ras Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21702
| |
Collapse
|
23
|
Schöpel M, Shkura O, Seidel J, Kock K, Zhong X, Löffek S, Helfrich I, Bachmann HS, Scherkenbeck J, Herrmann C, Stoll R. Allosteric Activation of GDP-Bound Ras Isoforms by Bisphenol Derivative Plasticisers. Int J Mol Sci 2018; 19:ijms19041133. [PMID: 29642594 PMCID: PMC5979466 DOI: 10.3390/ijms19041133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/13/2023] Open
Abstract
The protein family of small GTPases controls cellular processes by acting as a binary switch between an active and an inactive state. The most prominent family members are H-Ras, N-Ras, and K-Ras isoforms, which are highly related and frequently mutated in cancer. Bisphenols are widespread in modern life because of their industrial application as plasticisers. Bisphenol A (BPA) is the best-known member and has gained significant scientific as well as public attention as an endocrine disrupting chemical, a fact that eventually led to its replacement. However, compounds used to replace BPA still contain the molecular scaffold of bisphenols. BPA, BPAF, BPB, BPE, BPF, and an amine-substituted BPAF-derivate all interact with all GDP-bound Ras-Isoforms through binding to a common site on these proteins. NMR-, SOScat-, and GDI- assay-based data revealed a new bisphenol-induced, allosterically activated GDP-bound Ras conformation that define these plasticisers as Ras allosteric agonists.
Collapse
Affiliation(s)
- Miriam Schöpel
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Oleksandr Shkura
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Jana Seidel
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Klaus Kock
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Xueyin Zhong
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Stefanie Löffek
- Skin Cancer Unit of the Dermatology Department, West German Cancer Center, University Hospital Essen, University Duisburg-Essen and the German Cancer Consortium (DKTK), D-45147 Essen, Germany.
| | - Iris Helfrich
- Skin Cancer Unit of the Dermatology Department, West German Cancer Center, University Hospital Essen, University Duisburg-Essen and the German Cancer Consortium (DKTK), D-45147 Essen, Germany.
| | - Hagen S Bachmann
- Institute of Pharmacology and Toxicology, Witten/Herdecke University, Stockumer Str. 10, D-58453 Witten, Germany.
| | - Jürgen Scherkenbeck
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, D-42119 Wuppertal, Germany.
| | - Christian Herrmann
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Raphael Stoll
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
24
|
Brylinski M, Naderi M, Govindaraj RG, Lemoine J. eRepo-ORP: Exploring the Opportunity Space to Combat Orphan Diseases with Existing Drugs. J Mol Biol 2017; 430:2266-2273. [PMID: 29237557 DOI: 10.1016/j.jmb.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/15/2017] [Accepted: 12/05/2017] [Indexed: 01/29/2023]
Abstract
About 7000 rare, or orphan, diseases affect more than 350 million people worldwide. Although these conditions collectively pose significant health care problems, drug companies seldom develop drugs for orphan diseases due to extremely limited individual markets. Consequently, developing new treatments for often life-threatening orphan diseases is primarily contingent on financial incentives from governments, special research grants, and private philanthropy. Computer-aided drug repositioning is a cheaper and faster alternative to traditional drug discovery offering a promising venue for orphan drug research. Here, we present eRepo-ORP, a comprehensive resource constructed by a large-scale repositioning of existing drugs to orphan diseases with a collection of structural bioinformatics tools, including eThread, eFindSite, and eMatchSite. Specifically, a systematic exploration of 320,856 possible links between known drugs in DrugBank and orphan proteins obtained from Orphanet reveals as many as 18,145 candidates for repurposing. In order to illustrate how potential therapeutics for rare diseases can be identified with eRepo-ORP, we discuss the repositioning of a kinase inhibitor for Ras-associated autoimmune leukoproliferative disease. The eRepo-ORP data set is available through the Open Science Framework at https://osf.io/qdjup/.
Collapse
Affiliation(s)
- Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Misagh Naderi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Jeffrey Lemoine
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Division of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
25
|
Pisco JP, de Chiara C, Pacholarz KJ, Garza-Garcia A, Ogrodowicz RW, Walker PA, Barran PE, Smerdon SJ, de Carvalho LPS. Uncoupling conformational states from activity in an allosteric enzyme. Nat Commun 2017; 8:203. [PMID: 28781362 PMCID: PMC5545217 DOI: 10.1038/s41467-017-00224-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
ATP-phosphoribosyltransferase (ATP-PRT) is a hexameric enzyme in conformational equilibrium between an open and seemingly active state and a closed and presumably inhibited form. The structure-function relationship of allosteric regulation in this system is still not fully understood. Here, we develop a screening strategy for modulators of ATP-PRT and identify 3-(2-thienyl)-l-alanine (TIH) as an allosteric activator of this enzyme. Kinetic analysis reveals co-occupancy of the allosteric sites by TIH and l-histidine. Crystallographic and native ion-mobility mass spectrometry data show that the TIH-bound activated form of the enzyme closely resembles the inhibited l-histidine-bound closed conformation, revealing the uncoupling between ATP-PRT open and closed conformations and its functional state. These findings suggest that dynamic processes are responsible for ATP-PRT allosteric regulation and that similar mechanisms might also be found in other enzymes bearing a ferredoxin-like allosteric domain. Active and inactive state ATP-phosphoribosyltransferases (ATP-PRTs) are believed to have different conformations. Here the authors show that in both states, ATP-PRT has a similar structural arrangement, suggesting that dynamic alterations are involved in ATP-PRT regulation by allosteric modulators.
Collapse
Affiliation(s)
- João P Pisco
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Cesira de Chiara
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Kamila J Pacholarz
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology & School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Acely Garza-Garcia
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Roksana W Ogrodowicz
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Philip A Walker
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology & School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Stephen J Smerdon
- Structural Biology of DNA-damage Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Luiz Pedro S de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
26
|
Welsch ME, Kaplan A, Chambers JM, Stokes ME, Bos PH, Zask A, Zhang Y, Sanchez-Martin M, Badgley MA, Huang CS, Tran TH, Akkiraju H, Brown LM, Nandakumar R, Cremers S, Yang WS, Tong L, Olive KP, Ferrando A, Stockwell BR. Multivalent Small-Molecule Pan-RAS Inhibitors. Cell 2017; 168:878-889.e29. [PMID: 28235199 DOI: 10.1016/j.cell.2017.02.006] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/23/2016] [Accepted: 02/01/2017] [Indexed: 12/30/2022]
Abstract
Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, may provide chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small-molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found to bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins.
Collapse
Affiliation(s)
- Matthew E Welsch
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Anna Kaplan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jennifer M Chambers
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Michael E Stokes
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Pieter H Bos
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Yan Zhang
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Marta Sanchez-Martin
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael A Badgley
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Diseases in the Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Christine S Huang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Timothy H Tran
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Hemanth Akkiraju
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY 10027, USA
| | - Lewis M Brown
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY 10027, USA
| | - Renu Nandakumar
- Irving Institute for Clinical and Translational Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Serge Cremers
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA; Irving Institute for Clinical and Translational Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Wan Seok Yang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Kenneth P Olive
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Diseases in the Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
27
|
Nakata H, Fedorov DG. Efficient Geometry Optimization of Large Molecular Systems in Solution Using the Fragment Molecular Orbital Method. J Phys Chem A 2016; 120:9794-9804. [DOI: 10.1021/acs.jpca.6b09743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroya Nakata
- Department
of Fundamental Technology Research, R and D Center Kagoshima, Kyocera, 1-4 Kokubu Yamashita-cho, Kirishima-shi, Kagoshima 899-4312, Japan
| | - Dmitri G. Fedorov
- Research
Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology, 1-1-1
Umezono, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
28
|
Lu S, Jang H, Gu S, Zhang J, Nussinov R. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem Soc Rev 2016; 45:4929-52. [PMID: 27396271 PMCID: PMC5021603 DOI: 10.1039/c5cs00911a] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Shuo Gu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
29
|
Ying H, Dey P, Yao W, Kimmelman AC, Draetta GF, Maitra A, DePinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2016; 30:355-85. [PMID: 26883357 PMCID: PMC4762423 DOI: 10.1101/gad.275776.115] [Citation(s) in RCA: 391] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ying et al. review pancreatic ductal adenocarcinoma (PDAC) genetics and biology, particularly altered cancer cell metabolism, the complexity of immune regulation in the tumor microenvironment, and impaired DNA repair processes. With 5-year survival rates remaining constant at 6% and rising incidences associated with an epidemic in obesity and metabolic syndrome, pancreatic ductal adenocarcinoma (PDAC) is on track to become the second most common cause of cancer-related deaths by 2030. The high mortality rate of PDAC stems primarily from the lack of early diagnosis and ineffective treatment for advanced tumors. During the past decade, the comprehensive atlas of genomic alterations, the prominence of specific pathways, the preclinical validation of such emerging targets, sophisticated preclinical model systems, and the molecular classification of PDAC into specific disease subtypes have all converged to illuminate drug discovery programs with clearer clinical path hypotheses. A deeper understanding of cancer cell biology, particularly altered cancer cell metabolism and impaired DNA repair processes, is providing novel therapeutic strategies that show strong preclinical activity. Elucidation of tumor biology principles, most notably a deeper understanding of the complexity of immune regulation in the tumor microenvironment, has provided an exciting framework to reawaken the immune system to attack PDAC cancer cells. While the long road of translation lies ahead, the path to meaningful clinical progress has never been clearer to improve PDAC patient survival.
Collapse
Affiliation(s)
- Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Prasenjit Dey
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wantong Yao
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Alec C Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Giulio F Draetta
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Anirban Maitra
- Department of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; Sheikh Ahmed Pancreatic Cancer Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
30
|
Nussinov R, Muratcioglu S, Tsai CJ, Jang H, Gursoy A, Keskin O. K-Ras4B/calmodulin/PI3Kα: A promising new adenocarcinoma-specific drug target? Expert Opin Ther Targets 2016; 20:831-42. [DOI: 10.1517/14728222.2016.1135131] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
31
|
Schöpel M, Herrmann C, Scherkenbeck J, Stoll R. The Bisphenol A analogue Bisphenol S binds to K-Ras4B--implications for 'BPA-free' plastics. FEBS Lett 2016; 590:369-75. [PMID: 26867649 DOI: 10.1002/1873-3468.12056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/21/2015] [Accepted: 01/01/2016] [Indexed: 12/19/2022]
Abstract
K-Ras4B is a small GTPase that belongs to the Ras superfamily of guanine nucleotide-binding proteins. GTPases function as molecular switches in cells and are key players in intracellular signalling. Ras has been identified as an oncogene and is mutated in more than 20% of human cancers. Here, we report that Bisphenol S binds into a binding pocket of K-Ras4B previously identified for various low molecular weight compounds. Our results advocate for more comprehensive safety studies on the toxicity of Bisphenol S, as it is frequently used for Bisphenol A-free food containers.
Collapse
Affiliation(s)
- Miriam Schöpel
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Germany
| | - Christian Herrmann
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Germany
| | | | - Raphael Stoll
- Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Germany
| |
Collapse
|
32
|
Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J. Ras Conformational Ensembles, Allostery, and Signaling. Chem Rev 2016; 116:6607-65. [PMID: 26815308 DOI: 10.1021/acs.chemrev.5b00542] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China.,Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | | | | | | | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States.,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China
| |
Collapse
|
33
|
Prakash P, Hancock JF, Gorfe AA. Binding hotspots on K-ras: consensus ligand binding sites and other reactive regions from probe-based molecular dynamics analysis. Proteins 2015; 83:898-909. [PMID: 25740554 PMCID: PMC4400267 DOI: 10.1002/prot.24786] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 01/21/2023]
Abstract
We have used probe-based molecular dynamics (pMD) simulations to search for interaction hotspots on the surface of the therapeutically highly relevant oncogenic K-Ras G12D. Combining the probe-based query with an ensemble-based pocket identification scheme and an analysis of existing Ras-ligand complexes, we show that (i) pMD is a robust and cost-effective strategy for binding site identification, (ii) all four of the previously reported ligand binding sites are suitable for structure-based ligand design, and (iii) in some cases probe binding and expanded sampling of configurational space enable pocket expansion and increase the likelihood of site identification. Furthermore, by comparing the distribution of hotspots in nonpocket-like regions with known protein- and membrane-interacting interfaces, we propose that pMD has the potential to predict surface patches responsible for protein-biomolecule interactions. These observations have important implications for future drug design efforts and will facilitate the search for potential interfaces responsible for the proposed transient oligomerization or interaction of Ras with other biomolecules in the cellular milieu.
Collapse
Affiliation(s)
- Priyanka Prakash
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, Texas 77030
| | - John F. Hancock
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, Texas 77030
| | - Alemayehu A. Gorfe
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, Texas 77030
| |
Collapse
|