1
|
Napoli F, Guan JY, Arnaud CA, Macek P, Fraga H, Breyton C, Schanda P. Deuteration of proteins boosted by cell lysates: high-resolution amide and H α magic-angle-spinning (MAS) NMR without the reprotonation bottleneck. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2024; 5:33-49. [PMID: 40384771 PMCID: PMC12082565 DOI: 10.5194/mr-5-33-2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2025]
Abstract
Amide-proton-detected magic-angle-spinning NMR of deuterated proteins has become a main technique in NMR-based structural biology. In standard deuteration protocols that rely on D2 O-based culture media, non-exchangeable amide sites remain deuterated, making these sites unobservable. Here we demonstrate that proteins produced with a H2 O-based culture medium doped with deuterated cell lysate allow scientists to overcome this "reprotonation bottleneck" while retaining a high level of deuteration (ca. 80 %) and narrow linewidths. We quantified coherence lifetimes of several proteins prepared with this labeling pattern over a range of magic-angle-spinning (MAS) frequencies (40-100 kHz). We demonstrate that under commonly used conditions (50-60 kHz MAS), the amide1 H linewidths with our labeling approach are comparable to those of perdeuterated proteins and better than those of protonated samples at 100 kHz. For three proteins in the 33-50 kDa size range, many previously unobserved amides become visible. We report how to prepare the deuterated cell lysate for our approach from fractions of perdeuterated cultures which are usually discarded, and we show that such media can be used identically to commercial media. The residual protonation of H α sites allows for well-resolved H α -detected spectra and H α resonance assignment, exemplified by the de novo assignment of 168 H α sites in a 39 kDa protein. The approach based on this H2 O/cell-lysate deuteration and MAS frequencies compatible with 1.3 or 1.9 mm rotors presents a strong sensitivity benefit over 0.7 mm 100 kHz MAS experiments.
Collapse
Affiliation(s)
- Federico Napoli
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jia-Ying Guan
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Pavel Macek
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Hugo Fraga
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Cécile Breyton
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Paul Schanda
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
2
|
Osborn Popp TM, Matchett BT, Green RG, Chhabra I, Mumudi S, Bernstein AD, Perodeau JR, Nieuwkoop AJ. 3D-Printable centrifugal devices for biomolecular solid state NMR rotors. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 354:107524. [PMID: 37481918 PMCID: PMC10528322 DOI: 10.1016/j.jmr.2023.107524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
The advent of magic angle spinning (MAS) rates exceeding 100 kHz has facilitated the acquisition of 1H-detected solid-state NMR spectra of biomolecules with high resolution. However, challenges can arise when preparing rotors for these experiments, due to the physical properties of biomolecular solid samples and the small dimensions of the rotors. In this study, we have designed 3D-printable centrifugal devices that facilitate efficient and consistent packing of crystalline protein slurries or viscous phospholipids into 0.7 mm rotors. We demonstrate the efficacy of these packing devices using 1H-detected solid state NMR at 105 kHz. In addition to devices for 0.7 mm rotors, we have also developed devices for other frequently employed rotor sizes and styles. We have made all our designs openly accessible, and we encourage their usage and ongoing development as a shared effort within the solid state NMR community.
Collapse
Affiliation(s)
- Thomas M Osborn Popp
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States.
| | - Brandon T Matchett
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Rashawn G Green
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Insha Chhabra
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Smriti Mumudi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Ashley D Bernstein
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Jacqueline R Perodeau
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New, Jersey, Piscataway, NJ 08854, United States.
| |
Collapse
|
3
|
Akbey Ü. Site-specific protein backbone deuterium 2H α quadrupolar patterns by proton-detected quadruple-resonance 3D 2H αc αNH MAS NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 125:101861. [PMID: 36989552 DOI: 10.1016/j.ssnmr.2023.101861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 06/11/2023]
Abstract
A novel deuterium-excited and proton-detected quadruple-resonance three-dimensional (3D) 2HαcαNH MAS nuclear magnetic resonance (NMR) method is presented to obtain site-specific 2Hα deuterium quadrupolar couplings from protein backbone, as an extension to the 2D version of the experiment reported earlier. Proton-detection results in high sensitivity compared to the heteronuclei detection methods. Utilizing four independent radiofrequency (RF) channels (quadruple-resonance), we managed to excite the 2Hα, then transfer deuterium polarization to its attached Cα, followed by polarization transfers to the neighboring backbone nitrogen and then to the amide proton for detection. This experiment results in an easy to interpret HSQC-like 2D 1H-15N fingerprint NMR spectrum, which contains site-specific deuterium quadrupolar patterns in the indirect third dimension. Provided that four-channel NMR probe technology is available, the setup of the 2HαcαNH experiment is relatively straightforward, by using low power deuterium excitation and polarization transfer schemes we have been developing. To our knowledge, this is the first demonstration of a quadruple-resonance MAS NMR experiment to link 2Hα quadrupolar couplings to proton-detection, extending our previous triple-resonance demonstrations. Distortion-free excitation and polarization transfer of ∼160-170 kHz 2Hα quadrupolar coupling were presented by using a deuterium RF strength of ∼20 kHz. From these 2Hα patterns, an average backbone order parameter of S = 0.92 was determined on a deuterated SH3 sample, with an average η = 0.22. These indicate that SH3 backbone represents sizable dynamics in the microsecond timescale where the 2Hα lineshape is sensitive. Moreover, site-specific 2Hα T1 relaxation times were obtained for a proof of concept. This 3D 2HαcαNH NMR experiment has the potential to determine structure and dynamics of perdeuterated proteins by utilizing deuterium as a novel reporter.
Collapse
Affiliation(s)
- Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, 15261, United States.
| |
Collapse
|
4
|
Akbey Ü. Site-specific protein methyl deuterium quadrupolar patterns by proton-detected 3D 2H- 13C- 1H MAS NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2022; 76:23-28. [PMID: 34997409 DOI: 10.1007/s10858-021-00388-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Determination of protein structure and dynamics is key to understand the mechanism of protein action. Perdeuterated proteins have been used to obtain high resolution/sensitivty NMR experiments via proton-detection. These methods utilizes 1H, 13C and 15N nuclei for chemical shift dispersion or relaxation probes, despite the existing abundant deuterons. However, a high-sensitivity NMR method to utilize deuterons and e.g. determine site-specific deuterium quadrupolar pattern information has been lacking due to technical difficulties associated with deuterium's large quadrupolar couplings. Here, we present a novel deuterium-excited and proton-detected three-dimensional 2H-13C-1H MAS NMR experiment to utilize deuterons and to obtain site-specific methyl 2H quadrupolar patterns on detuterated proteins for the first time. A high-resolution fingerprint 1H-15N HSQC-spectrum is correlated with the anisotropic deuterium quadrupolar tensor in the third dimension. Results from a model perdeuterated protein has been shown.
Collapse
Affiliation(s)
- Ümit Akbey
- Radboud University, Magnetic Resonance Research Center, Institute for Molecules and Materials, Nijmegen, The Netherlands.
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Akbey Ü. Dynamics of uniformly labelled solid proteins between 100 and 300 K: A 2D 2H- 13C MAS NMR approach. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 327:106974. [PMID: 33823335 DOI: 10.1016/j.jmr.2021.106974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
We describe a 2H based MAS nuclear magnetic resonance (NMR) method to obtain site-specific molecular dynamics of biomolecules. The method utilizes the use of deuterium nucleus as a spin label that is proven to be very useful in dynamics studies of solid biological and functional materials. The aim is to understand overall characteristics of protein backbone and side-chain motions for CD3, CD2 and CD groups, in terms of timescale, type and activation energy of the underlying processes. Variable temperature two-dimensional (2D) 2H-13C correlation MAS NMR spectra were recorded for the uniformly 2H,13C,15N labelled Alanine and microcrystalline SH3 at a broad temperature range, from 320 K down to 100 K. First, the deuterium quadrupolar-coupling constant from specific D-C sites is obtained with the 2D experiment by utilizing carbon chemical shifts. Second, the static quadrupolar patterns are obtained at 100 K. Third, variable temperature approach enabled the observation of quadrupolar pattern over different motional regimes; slow, intermediate and fast. And finally, the apparent activation energies for C-D sites are determined and compared, by evaluating the temperature induced signal intensities. This information led to the determination of the dynamic processes for different D-C sites at a broad range of temperature and motional timescales. This is a first representation of 2D 2H-13C MAS NMR approach applied to fully isotope labelled deuterated protein covering 220 K temperature range.
Collapse
Affiliation(s)
- Ümit Akbey
- Weizmann Institute of Science, Department of Chemical and Biological Physics, Perlman Chemical Sciences Building, P.O. Box 26, Rehovot 76100, Israel.
| |
Collapse
|
6
|
Nimerovsky E, Movellan KT, Zhang XC, Forster MC, Najbauer E, Xue K, Dervişoǧlu R, Giller K, Griesinger C, Becker S, Andreas LB. Proton Detected Solid-State NMR of Membrane Proteins at 28 Tesla (1.2 GHz) and 100 kHz Magic-Angle Spinning. Biomolecules 2021; 11:752. [PMID: 34069858 PMCID: PMC8157399 DOI: 10.3390/biom11050752] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
The available magnetic field strength for high resolution NMR in persistent superconducting magnets has recently improved from 23.5 to 28 Tesla, increasing the proton resonance frequency from 1 to 1.2 GHz. For magic-angle spinning (MAS) NMR, this is expected to improve resolution, provided the sample preparation results in homogeneous broadening. We compare two-dimensional (2D) proton detected MAS NMR spectra of four membrane proteins at 950 and 1200 MHz. We find a consistent improvement in resolution that scales superlinearly with the increase in magnetic field for three of the four examples. In 3D and 4D spectra, which are now routinely acquired, this improvement indicates the ability to resolve at least 2 and 2.5 times as many signals, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Loren B. Andreas
- Department for NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany; (E.N.); (K.T.M.); (X.C.Z.); (M.C.F.); (E.N.); (K.X.); (R.D.); (K.G.); (C.G.); (S.B.)
| |
Collapse
|
7
|
Zhang Z, Oss A, Org ML, Samoson A, Li M, Tan H, Su Y, Yang J. Selectively Enhanced 1H- 1H Correlations in Proton-Detected Solid-State NMR under Ultrafast MAS Conditions. J Phys Chem Lett 2020; 11:8077-8083. [PMID: 32880459 DOI: 10.1021/acs.jpclett.0c02412] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proton-detected solid-state NMR has emerged as a powerful analytical technique in structural elucidation via 1H-1H correlations, which are mostly established by broadband methods. We propose a new class of frequency-selective homonuclear recoupling methods to selectively enhance 1H-1H correlations of interest under ultrafast magic-angle spinning (MAS). These methods, dubbed as selective phase-optimized recoupling (SPR), can provide a sensitivity enhancement by a factor of ∼3 over the widely used radio-frequency-driven recoupling (RFDR) to observe 1HN-1HN contacts in a protonated tripeptide N-formyl-Met-Leu-Phe (fMLF) under 150 kHz MAS and are successfully utilized to probe a long-range 1H-1H contact in a pharmaceutical molecule, the hydrochloride form of pioglitazone (PIO-HCl). SPR is not only highly efficient in frequency-selective recoupling but also easy to implement, imparting to it great potential to probe 1H-1H contacts for the structural elucidation of organic solids such as proteins and pharmaceuticals under ultrafast MAS conditions.
Collapse
Affiliation(s)
- Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Andres Oss
- Tallinn University of Technology, Tallinn 19086, Estonia
| | - Mai-Liis Org
- Tallinn University of Technology, Tallinn 19086, Estonia
| | - Ago Samoson
- Tallinn University of Technology, Tallinn 19086, Estonia
| | - Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Huan Tan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
8
|
Friedrich D, Perodeau J, Nieuwkoop AJ, Oschkinat H. MAS NMR detection of hydrogen bonds for protein secondary structure characterization. JOURNAL OF BIOMOLECULAR NMR 2020; 74:247-256. [PMID: 32185644 PMCID: PMC7211791 DOI: 10.1007/s10858-020-00307-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/09/2020] [Indexed: 05/26/2023]
Abstract
Hydrogen bonds are essential for protein structure and function, making experimental access to long-range interactions between amide protons and heteroatoms invaluable. Here we show that measuring distance restraints involving backbone hydrogen atoms and carbonyl- or α-carbons enables the identification of secondary structure elements based on hydrogen bonds, provides long-range contacts and validates spectral assignments. To this end, we apply specifically tailored, proton-detected 3D (H)NCOH and (H)NCAH experiments under fast magic angle spinning (MAS) conditions to microcrystalline samples of SH3 and GB1. We observe through-space, semi-quantitative correlations between protein backbone carbon atoms and multiple amide protons, enabling us to determine hydrogen bonding patterns and thus to identify β-sheet topologies and α-helices in proteins. Our approach shows the value of fast MAS and suggests new routes in probing both secondary structure and the role of functionally-relevant protons in all targets of solid-state MAS NMR.
Collapse
Affiliation(s)
- Daniel Friedrich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA, 02215, USA
| | - Jacqueline Perodeau
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd., Piscataway, NJ, 08854, United States
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd., Piscataway, NJ, 08854, United States.
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany.
| |
Collapse
|
9
|
Friedrich D, Brünig FN, Nieuwkoop AJ, Netz RR, Hegemann P, Oschkinat H. Collective exchange processes reveal an active site proton cage in bacteriorhodopsin. Commun Biol 2020; 3:4. [PMID: 31925324 PMCID: PMC6941954 DOI: 10.1038/s42003-019-0733-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/02/2019] [Indexed: 01/01/2023] Open
Abstract
Proton translocation across membranes is vital to all kingdoms of life. Mechanistically, it relies on characteristic proton flows and modifications of hydrogen bonding patterns, termed protonation dynamics, which can be directly observed by fast magic angle spinning (MAS) NMR. Here, we demonstrate that reversible proton displacement in the active site of bacteriorhodopsin already takes place in its equilibrated dark-state, providing new information on the underlying hydrogen exchange processes. In particular, MAS NMR reveals proton exchange at D85 and the retinal Schiff base, suggesting a tautomeric equilibrium and thus partial ionization of D85. We provide evidence for a proton cage and detect a preformed proton path between D85 and the proton shuttle R82. The protons at D96 and D85 exchange with water, in line with ab initio molecular dynamics simulations. We propose that retinal isomerization makes the observed proton exchange processes irreversible and delivers a proton towards the extracellular release site. Daniel Friedrich et al. show that reversible proton translocation occurs in the dark–state of bacteriorhodopsin, involving the retinal Schiff base and D85 exchanging protons with H2O. They find evidence of an active site proton cage and possible proton transfer via R82.
Collapse
Affiliation(s)
- Daniel Friedrich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Freie Universität Berlin, Institut für Chemie und Biochemie, 14195, Berlin, Germany.,Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA, 02215, USA
| | - Florian N Brünig
- Freie Universität Berlin, Fachbereich Physik, 14195, Berlin, Germany
| | - Andrew J Nieuwkoop
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Roland R Netz
- Freie Universität Berlin, Fachbereich Physik, 14195, Berlin, Germany
| | - Peter Hegemann
- Humboldt-Universität zu Berlin, Institut für Biologie, Invalidenstr. 42, 10115, Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany. .,Freie Universität Berlin, Institut für Chemie und Biochemie, 14195, Berlin, Germany.
| |
Collapse
|
10
|
Xue K, Sarkar R, Tosner Z, Lalli D, Motz C, Koch B, Pintacuda G, Reif B. MAS dependent sensitivity of different isotopomers in selectively methyl protonated protein samples in solid state NMR. JOURNAL OF BIOMOLECULAR NMR 2019; 73:625-631. [PMID: 31515660 DOI: 10.1007/s10858-019-00274-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Sensitivity and resolution together determine the quality of NMR spectra in biological solids. For high-resolution structure determination with solid-state NMR, proton-detection emerged as an attractive strategy in the last few years. Recent progress in probe technology has extended the range of available MAS frequencies up to above 100 kHz, enabling the detection of resolved resonances from sidechain protons, which are important reporters of structure. Here we characterise the interplay between MAS frequency in the newly available range of 70-110 kHz and proton content on the spectral quality obtainable on a 1 GHz spectrometer for methyl resonances. Variable degrees of proton densities are tested on microcrystalline samples of the α-spectrin SH3 domain with selectively protonated methyl isotopomers (CH3, CH2D, CHD2) in a perdeuterated matrix. The experimental results are supported by simulations that allow the prediction of the sensitivity outside this experimental frequency window. Our results facilitate the selection of the appropriate labelling scheme at a given MAS rotation frequency.
Collapse
Affiliation(s)
- Kai Xue
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Riddhiman Sarkar
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany.
| | - Zdenek Tosner
- Department of Chemistry, Faculty of Science, Charles University, Hlavova 8, 12842, Prague 2, Czech Republic
| | - Daniela Lalli
- Centre de Résonance Magnétique Nucléaire a Très hauts Champs (FRE 2034, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1), Université de Lyon, 5 Rue de la Doua, 69100, Villeurbanne, France
| | - Carina Motz
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Benita Koch
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire a Très hauts Champs (FRE 2034, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1), Université de Lyon, 5 Rue de la Doua, 69100, Villeurbanne, France
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 15121, Alessandria, Italy
| | - Bernd Reif
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
- Munich Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747, Garching, Germany.
| |
Collapse
|
11
|
Gallo A, Franks WT, Lewandowski JR. A suite of solid-state NMR experiments to utilize orphaned magnetization for assignment of proteins using parallel high and low gamma detection. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:219-231. [PMID: 31319283 DOI: 10.1016/j.jmr.2019.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 05/18/2023]
Abstract
We present a suite of two-receiver solid-state NMR experiments for backbone and side chain resonance assignment. The experiments rely on either dipolar coupling or scalar coupling for polarization transfer and are devised to acquire a 1H-detected 3D experiment AND a nested 13C-detected 2D from a shared excitation pulse. In order to compensate for the lower sensitivity of detection on 13C nucleus, 2D rows are signal averaged during 3D planes. The 3D dual receiver experiments do not suffer from any appreciable signal loss compared to their single receiver versions and require no extra optimization. The resulting data is higher in information content with no additional experiment time. The approach is expected to become widespread as multiple receivers become standard for new NMR spectrometers.
Collapse
Affiliation(s)
- A Gallo
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, UK
| | - W T Franks
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, UK; Department of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, UK
| | - J R Lewandowski
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, UK.
| |
Collapse
|
12
|
Demers JP, Fricke P, Shi C, Chevelkov V, Lange A. Structure determination of supra-molecular assemblies by solid-state NMR: Practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:51-78. [PMID: 30527136 DOI: 10.1016/j.pnmrs.2018.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 05/26/2023]
Abstract
In the cellular environment, biomolecules assemble in large complexes which can act as molecular machines. Determining the structure of intact assemblies can reveal conformations and inter-molecular interactions that are only present in the context of the full assembly. Solid-state NMR (ssNMR) spectroscopy is a technique suitable for the study of samples with high molecular weight that allows the atomic structure determination of such large protein assemblies under nearly physiological conditions. This review provides a practical guide for the first steps of studying biological supra-molecular assemblies using ssNMR. The production of isotope-labeled samples is achievable via several means, which include recombinant expression, cell-free protein synthesis, extraction of assemblies directly from cells, or even the study of assemblies in whole cells in situ. Specialized isotope labeling schemes greatly facilitate the assignment of chemical shifts and the collection of structural data. Advanced strategies such as mixed, diluted, or segmental subunit labeling offer the possibility to study inter-molecular interfaces. Detailed and practical considerations are presented with respect to first setting up magic-angle spinning (MAS) ssNMR experiments, including the selection of the ssNMR rotor, different methods to best transfer the sample and prepare the rotor, as well as common and robust procedures for the calibration of the instrument. Diagnostic spectra to evaluate the resolution and sensitivity of the sample are presented. Possible improvements that can reduce sample heterogeneity and improve the quality of ssNMR spectra are reviewed.
Collapse
Affiliation(s)
- Jean-Philippe Demers
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Pascal Fricke
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
13
|
Martin RW, Kelly JE, Kelz JI. Advances in instrumentation and methodology for solid-state NMR of biological assemblies. J Struct Biol 2018; 206:73-89. [PMID: 30205196 DOI: 10.1016/j.jsb.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/08/2018] [Accepted: 09/06/2018] [Indexed: 01/11/2023]
Abstract
Many advances in instrumentation and methodology have furthered the use of solid-state NMR as a technique for determining the structures and studying the dynamics of molecules involved in complex biological assemblies. Solid-state NMR does not require large crystals, has no inherent size limit, and with appropriate isotopic labeling schemes, supports solving one component of a complex assembly at a time. It is complementary to cryo-EM, in that it provides local, atomic-level detail that can be modeled into larger-scale structures. This review focuses on the development of high-field MAS instrumentation and methodology; including probe design, benchmarking strategies, labeling schemes, and experiments that enable the use of quadrupolar nuclei in biomolecular NMR. Current challenges facing solid-state NMR of biological assemblies and new directions in this dynamic research area are also discussed.
Collapse
Affiliation(s)
- Rachel W Martin
- Department of Chemistry, University of California, Irvine 92697-2025, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, United States.
| | - John E Kelly
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| | - Jessica I Kelz
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| |
Collapse
|
14
|
Marchanka A, Stanek J, Pintacuda G, Carlomagno T. Rapid access to RNA resonances by proton-detected solid-state NMR at >100 kHz MAS. Chem Commun (Camb) 2018; 54:8972-8975. [PMID: 29974085 PMCID: PMC6088370 DOI: 10.1039/c8cc04437f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fast (>100 kHz) magic angle spinning solid-state NMR allows combining high-sensitive proton detection with the absence of an intrinsic molecular weight limit. Here we apply this technique to RNA and assign nucleotide spin systems through highly sensitive multidimensional experiments.
Fast (>100 kHz) magic angle spinning solid-state NMR allows combining high-sensitive proton detection with the absence of an intrinsic molecular weight limit. Using this technique we observe for the first time narrow 1H RNA resonances and assign nucleotide spin systems with only 200 μg of uniformly 13C,15N-labelled RNA.
Collapse
Affiliation(s)
- Alexander Marchanka
- Centre for Biomolecular Drug Research (BMWZ) and Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany.
| | - Jan Stanek
- Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Guido Pintacuda
- Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Teresa Carlomagno
- Centre for Biomolecular Drug Research (BMWZ) and Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany. and Helmholtz Centre for Infection Research, Group of Structural Chemistry, Inhoffenstraße 7, 38124, Braunschweig, Germany
| |
Collapse
|
15
|
Higman VA. Solid-state MAS NMR resonance assignment methods for proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:37-65. [PMID: 31047601 DOI: 10.1016/j.pnmrs.2018.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 06/09/2023]
Abstract
The prerequisite to structural or functional studies of proteins by NMR is generally the assignment of resonances. Since the first assignment of proteins by solid-state MAS NMR was conducted almost two decades ago, a wide variety of different pulse sequences and methods have been proposed and continue to be developed. Traditionally, a variety of 2D and 3D 13C-detected experiments have been used for the assignment of backbone and side-chain 13C and 15N resonances. These methods have found widespread use across the field. But as the hardware has changed and higher spinning frequencies and magnetic fields are becoming available, the ability to use direct proton detection is opening up a new set of assignment methods based on triple-resonance experiments. This review describes solid-state MAS NMR assignment methods using carbon detection and proton detection at different deuteration levels. The use of different isotopic labelling schemes as an aid to assignment in difficult cases is discussed as well as the increasing number of software packages that support manual and automated resonance assignment.
Collapse
Affiliation(s)
- Victoria A Higman
- Department of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TU, UK.
| |
Collapse
|
16
|
Abstract
Various recent developments in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have enabled an array of new insights regarding the structure, dynamics, and interactions of biomolecules. In the ever more integrated world of structural biology, ssNMR studies provide structural and dynamic information that is complementary to the data accessible by other means. ssNMR enables the study of samples lacking a crystalline lattice, featuring static as well as dynamic disorder, and does so independent of higher-order symmetry. The present study surveys recent applications of biomolecular ssNMR and examines how this technique is increasingly integrated with other structural biology techniques, such as (cryo) electron microscopy, solution-state NMR, and X-ray crystallography. Traditional ssNMR targets include lipid bilayer membranes and membrane proteins in a lipid bilayer environment. Another classic application has been in the area of protein misfolding and aggregation disorders, where ssNMR has provided essential structural data on oligomers and amyloid fibril aggregates. More recently, the application of ssNMR has expanded to a growing array of biological assemblies, ranging from non-amyloid protein aggregates, protein–protein complexes, viral capsids, and many others. Across these areas, multidimensional magic angle spinning (MAS) ssNMR has, in the last decade, revealed three-dimensional structures, including many that had been inaccessible by other structural biology techniques. Equally important insights in structural and molecular biology derive from the ability of MAS ssNMR to probe information beyond comprehensive protein structures, such as dynamics, solvent exposure, protein–protein interfaces, and substrate–enzyme interactions.
Collapse
|
17
|
Schubeis T, Le Marchand T, Andreas LB, Pintacuda G. 1H magic-angle spinning NMR evolves as a powerful new tool for membrane proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 287:140-152. [PMID: 29413327 DOI: 10.1016/j.jmr.2017.11.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
Building on a decade of continuous advances of the community, the recent development of very fast (60 kHz and above) magic-angle spinning (MAS) probes has revolutionised the field of solid-state NMR. This new spinning regime reduces the 1H-1H dipolar couplings, so that direct detection of the larger magnetic moment available from 1H is now possible at high resolution, not only in deuterated molecules but also in fully-protonated substrates. Such capabilities allow rapid "fingerprinting" of samples with a ten-fold reduction of the required sample amounts with respect to conventional approaches, and permit extensive, robust and expeditious assignment of small-to-medium sized proteins (up to ca. 300 residues), and the determination of inter-nuclear proximities, relative orientations of secondary structural elements, protein-cofactor interactions, local and global dynamics. Fast MAS and 1H detection techniques have nowadays been shown to be applicable to membrane-bound systems. This paper reviews the strategies underlying this recent leap forward in sensitivity and resolution, describing its potential for the detailed characterization of membrane proteins.
Collapse
Affiliation(s)
- Tobias Schubeis
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tanguy Le Marchand
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Loren B Andreas
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
18
|
Park SH, Berkamp S, Radoicic J, De Angelis AA, Opella SJ. Interaction of Monomeric Interleukin-8 with CXCR1 Mapped by Proton-Detected Fast MAS Solid-State NMR. Biophys J 2018; 113:2695-2705. [PMID: 29262362 DOI: 10.1016/j.bpj.2017.09.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/17/2017] [Accepted: 09/21/2017] [Indexed: 12/01/2022] Open
Abstract
The human chemokine interleukin-8 (IL-8; CXCL8) is a key mediator of innate immune and inflammatory responses. This small, soluble protein triggers a host of biological effects upon binding and activating CXCR1, a G protein-coupled receptor, located in the cell membrane of neutrophils. Here, we describe 1H-detected magic angle spinning solid-state NMR studies of monomeric IL-8 (1-66) bound to full-length and truncated constructs of CXCR1 in phospholipid bilayers under physiological conditions. Cross-polarization experiments demonstrate that most backbone amide sites of IL-8 (1-66) are immobilized and that their chemical shifts are perturbed upon binding to CXCR1, demonstrating that the dynamics and environments of chemokine residues are affected by interactions with the chemokine receptor. Comparisons of spectra of IL-8 (1-66) bound to full-length CXCR1 (1-350) and to N-terminal truncated construct NT-CXCR1 (39-350) identify specific chemokine residues involved in interactions with binding sites associated with N-terminal residues (binding site-I) and extracellular loop and helical residues (binding site-II) of the receptor. Intermolecular paramagnetic relaxation enhancement broadening of IL-8 (1-66) signals results from interactions of the chemokine with CXCR1 (1-350) containing Mn2+ chelated to an unnatural amino acid assists in the characterization of the receptor-bound form of the chemokine.
Collapse
Affiliation(s)
- Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Sabrina Berkamp
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Jasmina Radoicic
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Anna A De Angelis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California.
| |
Collapse
|
19
|
Collier KA, Sengupta S, Espinosa CA, Kelly JE, Kelz JI, Martin RW. Design and construction of a quadruple-resonance MAS NMR probe for investigation of extensively deuterated biomolecules. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 285:8-17. [PMID: 29059553 PMCID: PMC6317732 DOI: 10.1016/j.jmr.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 05/22/2023]
Abstract
Extensive deuteration is frequently used in solid-state NMR studies of biomolecules because it dramatically reduces both homonuclear (1H-1H) and heteronuclear (1H-13C and 1H-15N) dipolar interactions. This approach greatly improves resolution, enables low-power rf decoupling, and facilitates 1H-detected experiments even in rigid solids at moderate MAS rates. However, the resolution enhancement is obtained at some cost due the reduced abundance of protons available for polarization transfer. Although deuterium is a useful spin-1 NMR nucleus, in typical experiments the deuterons are not directly utilized because the available probes are usually triple-tuned to 1H,13C and 15N. Here we describe a 1H/13C/2H/15N MAS ssNMR probe designed for solid-state NMR of extensively deuterated biomolecules. The probe utilizes coaxial coils, with a modified Alderman-Grant resonator for the 1H channel, and a multiply resonant solenoid for 13C/2H/15N. A coaxial tuning-tube design is used for all four channels in order to efficiently utilize the constrained physical space available inside the magnet bore. Isolation among the channels is likewise achieved using short, adjustable transmission line elements. We present benchmarks illustrating the tuning of each channel and isolation among them and the magnetic field profiles at each frequency of interest. Finally, representative NMR data are shown demonstrating the performance of both the detection and decoupling circuits.
Collapse
Affiliation(s)
- Kelsey A Collier
- Department of Physics & Astronomy, UC Irvine, Irvine, CA 92697-4575, United States
| | - Suvrajit Sengupta
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States
| | | | - John E Kelly
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States
| | - Jessica I Kelz
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States
| | - Rachel W Martin
- Department of Chemistry, UC Irvine, Irvine, CA 92697-2025, United States; Department of Molecular Biology & Biochemistry, UC Irvine, Irvine, CA 92697-3900, United States.
| |
Collapse
|
20
|
Ge Y, Hung I, Liu X, Liu M, Gan Z, Li C. Measurement of amide proton chemical shift anisotropy in perdeuterated proteins using CSA amplification. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 284:33-38. [PMID: 28957683 DOI: 10.1016/j.jmr.2017.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/07/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
Measuring 1H chemical shift anisotropy (CSA) is useful for probing proton environments and dynamics but remains a challenge due to strong homonuclear interaction and relatively small shift anisotropy, especially in proteins with multiple proton sites. Here the extended chemical shift anisotropy amplification (xCSA) method is applied for amide proton CSA measurement in uniformly 2H enriched proteins under fast magic angle spinning. The xCSA method is capable of distinguishing the sign of the CSA asymmetry parameter, complimenting other multiple-pulse recoupling methods. A three-dimensional xCSA experiment is demonstrated for measuring the proton CSA of amide sites in aGB1 protein sample and the possible correlation of amide proton CSA with protein secondary structure is discussed.
Collapse
Affiliation(s)
- Yuwei Ge
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Ivan Hung
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
21
|
Cala-De Paepe D, Stanek J, Jaudzems K, Tars K, Andreas LB, Pintacuda G. Is protein deuteration beneficial for proton detected solid-state NMR at and above 100 kHz magic-angle spinning? SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:126-136. [PMID: 28802890 DOI: 10.1016/j.ssnmr.2017.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
1H-detection in solid-state NMR of proteins has been traditionally combined with deuteration for both resolution and sensitivity reasons, with the optimal level of proton dilution being dependent on MAS rate. Here we present 1H-detected 15N and 13C CP-HSQC spectra on two microcrystalline samples acquired at 60 and 111 kHz MAS and at ultra-high field. We critically compare the benefits of three labeling schemes yielding different levels of proton content in terms of resolution, coherence lifetimes and feasibility of scalar-based 2D correlations under these experimental conditions. We observe unexpectedly high resolution and sensitivity of aromatic resonances in 2D 13C-1H correlation spectra of protonated samples. Ultrafast MAS reduces or even removes the necessity of 1H dilution for high-resolution 1H-detection in biomolecular solid-state NMR. It yields 15N,1H and 13C,1H fingerprint spectra of exceptional resolution for fully protonated samples, with notably superior 1H and 13C lineshapes for side-chain resonances.
Collapse
Affiliation(s)
- Diane Cala-De Paepe
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Jan Stanek
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Kristaps Jaudzems
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Kaspars Tars
- Biomedical Research and Study Centre, Rātsupītes 1, LV1067, Riga, Latvia
| | - Loren B Andreas
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France; Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
22
|
Asami S, Reif B. Comparative Study of REDOR and CPPI Derived Order Parameters by 1H-Detected MAS NMR and MD Simulations. J Phys Chem B 2017; 121:8719-8730. [DOI: 10.1021/acs.jpcb.7b06812] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sam Asami
- Munich
Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
| | - Bernd Reif
- Munich
Center for Integrated Protein Science (CIPS-M) at Department Chemie, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
- Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
23
|
Backbone assignment of perdeuterated proteins by solid-state NMR using proton detection and ultrafast magic-angle spinning. Nat Protoc 2017; 12:764-782. [PMID: 28277547 DOI: 10.1038/nprot.2016.190] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Solid-state NMR (ssNMR) is a technique that allows the study of protein structure and dynamics at atomic detail. In contrast to X-ray crystallography and cryo-electron microscopy, proteins can be studied under physiological conditions-for example, in a lipid bilayer and at room temperature (0-35 °C). However, ssNMR requires considerable amounts (milligram quantities) of isotopically labeled samples. In recent years, 1H-detection of perdeuterated protein samples has been proposed as a method of alleviating the sensitivity issue. Such methods are, however, substantially more demanding to the spectroscopist, as compared with traditional 13C-detected approaches. As a guide, this protocol describes a procedure for the chemical shift assignment of the backbone atoms of proteins in the solid state by 1H-detected ssNMR. It requires a perdeuterated, uniformly 13C- and 15N-labeled protein sample with subsequent proton back-exchange to the labile sites. The sample needs to be spun at a minimum of 40 kHz in the NMR spectrometer. With a minimal set of five 3D NMR spectra, the protein backbone and some of the side-chain atoms can be completely assigned. These spectra correlate resonances within one amino acid residue and between neighboring residues; taken together, these correlations allow for complete chemical shift assignment via a 'backbone walk'. This results in a backbone chemical shift table, which is the basis for further analysis of the protein structure and/or dynamics by ssNMR. Depending on the spectral quality and complexity of the protein, data acquisition and analysis are possible within 2 months.
Collapse
|
24
|
Saurel O, Iordanov I, Nars G, Demange P, Le Marchand T, Andreas LB, Pintacuda G, Milon A. Local and Global Dynamics in Klebsiella pneumoniae Outer Membrane Protein a in Lipid Bilayers Probed at Atomic Resolution. J Am Chem Soc 2017; 139:1590-1597. [DOI: 10.1021/jacs.6b11565] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olivier Saurel
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Iordan Iordanov
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Guillaume Nars
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Pascal Demange
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Tanguy Le Marchand
- Institut de Sciences
Analytiques (UMR 5280 CNRS/ENS-Lyon/UCB Lyon 1), Université
de Lyon, 69007 Lyon, France
| | - Loren B. Andreas
- Institut de Sciences
Analytiques (UMR 5280 CNRS/ENS-Lyon/UCB Lyon 1), Université
de Lyon, 69007 Lyon, France
| | - Guido Pintacuda
- Institut de Sciences
Analytiques (UMR 5280 CNRS/ENS-Lyon/UCB Lyon 1), Université
de Lyon, 69007 Lyon, France
| | - Alain Milon
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
25
|
Stanek J, Andreas LB, Jaudzems K, Cala D, Lalli D, Bertarello A, Schubeis T, Akopjana I, Kotelovica S, Tars K, Pica A, Leone S, Picone D, Xu ZQ, Dixon NE, Martinez D, Berbon M, Mammeri NE, Noubhani A, Saupe S, Habenstein B, Loquet A, Pintacuda G. Zuordnung der Rückgrat- und Seitenketten-Protonen in vollständig protonierten Proteinen durch Festkörper-NMR-Spektroskopie: Mikrokristalle, Sedimente und Amyloidfibrillen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jan Stanek
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| | - Loren B. Andreas
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| | - Kristaps Jaudzems
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| | - Diane Cala
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| | - Daniela Lalli
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| | - Andrea Bertarello
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| | - Tobias Schubeis
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| | - Inara Akopjana
- Biomedical Research and Study Centre; Rātsupītes 1 LV1067 Riga Lettland
| | | | - Kaspars Tars
- Biomedical Research and Study Centre; Rātsupītes 1 LV1067 Riga Lettland
| | - Andrea Pica
- Department of Chemical Sciences; University of Naples Federico II; Via Cintia 80126 Naples Italien
| | - Serena Leone
- Department of Chemical Sciences; University of Naples Federico II; Via Cintia 80126 Naples Italien
| | - Delia Picone
- Department of Chemical Sciences; University of Naples Federico II; Via Cintia 80126 Naples Italien
| | - Zhi-Qiang Xu
- School of Chemistry; University of Wollongong; NSW 2522 Australien
| | | | - Denis Martinez
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac Frankreich
| | - Mélanie Berbon
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac Frankreich
| | - Nadia El Mammeri
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac Frankreich
| | - Abdelmajid Noubhani
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac Frankreich
| | - Sven Saupe
- Institut de Biochimie et de Génétique Cellulaire (UMR 5095, CNRS -; Université de Bordeaux); 33077 Bordeaux Frankreich
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac Frankreich
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac Frankreich
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| |
Collapse
|
26
|
Stanek J, Andreas LB, Jaudzems K, Cala D, Lalli D, Bertarello A, Schubeis T, Akopjana I, Kotelovica S, Tars K, Pica A, Leone S, Picone D, Xu ZQ, Dixon NE, Martinez D, Berbon M, El Mammeri N, Noubhani A, Saupe S, Habenstein B, Loquet A, Pintacuda G. NMR Spectroscopic Assignment of Backbone and Side-Chain Protons in Fully Protonated Proteins: Microcrystals, Sedimented Assemblies, and Amyloid Fibrils. Angew Chem Int Ed Engl 2016; 55:15504-15509. [DOI: 10.1002/anie.201607084] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/05/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Jan Stanek
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| | - Loren B. Andreas
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| | - Kristaps Jaudzems
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| | - Diane Cala
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| | - Daniela Lalli
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| | - Andrea Bertarello
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| | - Tobias Schubeis
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| | - Inara Akopjana
- Biomedical Research and Study Centre; Rātsupītes 1 LV1067 Riga Latvia
| | | | - Kaspars Tars
- Biomedical Research and Study Centre; Rātsupītes 1 LV1067 Riga Latvia
| | - Andrea Pica
- Department of Chemical Sciences; University of Naples Federico II; Via Cintia 80126 Naples Italy
| | - Serena Leone
- Department of Chemical Sciences; University of Naples Federico II; Via Cintia 80126 Naples Italy
| | - Delia Picone
- Department of Chemical Sciences; University of Naples Federico II; Via Cintia 80126 Naples Italy
| | - Zhi-Qiang Xu
- School of Chemistry; University of Wollongong; NSW 2522 Australia
| | | | - Denis Martinez
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac France
| | - Mélanie Berbon
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac France
| | - Nadia El Mammeri
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac France
| | - Abdelmajid Noubhani
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac France
| | - Sven Saupe
- Institut de Biochimie et de Génétique Cellulaire (UMR 5095, CNRS -; Université de Bordeaux); 33077 Bordeaux France
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac France
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| |
Collapse
|
27
|
Mote KR, Agarwal V, Madhu PK. Five decades of homonuclear dipolar decoupling in solid-state NMR: Status and outlook. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 97:1-39. [PMID: 27888838 DOI: 10.1016/j.pnmrs.2016.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
It has been slightly more than fifty years since the first homonuclear spin decoupling scheme, Lee-Goldburg decoupling, was proposed for removing homonuclear dipolar interactions in solid-state nuclear magnetic resonance. A family of such schemes has made observation of high-resolution NMR spectra of abundant spins possible in various applications in solid state. This review outlines the strategies used in this field and the future prospects of homonuclear spin decoupling in solid-state NMR.
Collapse
Affiliation(s)
- Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| |
Collapse
|
28
|
Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc Natl Acad Sci U S A 2016; 113:9187-92. [PMID: 27489348 DOI: 10.1073/pnas.1602248113] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of (1)H-(1)H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins.
Collapse
|
29
|
Dannatt HRW, Felletti M, Jehle S, Wang Y, Emsley L, Dixon NE, Lesage A, Pintacuda G. Weak and Transient Protein Interactions Determined by Solid‐State NMR. Angew Chem Int Ed Engl 2016; 55:6638-41. [DOI: 10.1002/anie.201511609] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Hugh R. W. Dannatt
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Michele Felletti
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Stefan Jehle
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Yao Wang
- Centre for Medical and Molecular Bioscience School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | - Lyndon Emsley
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Nicholas E. Dixon
- Centre for Medical and Molecular Bioscience School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| |
Collapse
|
30
|
Dannatt HRW, Felletti M, Jehle S, Wang Y, Emsley L, Dixon NE, Lesage A, Pintacuda G. Weak and Transient Protein Interactions Determined by Solid‐State NMR. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hugh R. W. Dannatt
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Michele Felletti
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Stefan Jehle
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Yao Wang
- Centre for Medical and Molecular Bioscience School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | - Lyndon Emsley
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Nicholas E. Dixon
- Centre for Medical and Molecular Bioscience School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| |
Collapse
|
31
|
Shi C, Fricke P, Lin L, Chevelkov V, Wegstroth M, Giller K, Becker S, Thanbichler M, Lange A. Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR. SCIENCE ADVANCES 2015; 1:e1501087. [PMID: 26665178 PMCID: PMC4672760 DOI: 10.1126/sciadv.1501087] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/15/2015] [Indexed: 05/20/2023]
Abstract
Bactofilins are a recently discovered class of cytoskeletal proteins of which no atomic-resolution structure has been reported thus far. The bacterial cytoskeleton plays an essential role in a wide range of processes, including morphogenesis, cell division, and motility. Among the cytoskeletal proteins, the bactofilins are bacteria-specific and do not have a eukaryotic counterpart. The bactofilin BacA of the species Caulobacter crescentus is not amenable to study by x-ray crystallography or solution nuclear magnetic resonance (NMR) because of its inherent noncrystallinity and insolubility. We present the atomic structure of BacA calculated from solid-state NMR-derived distance restraints. We show that the core domain of BacA forms a right-handed β helix with six windings and a triangular hydrophobic core. The BacA structure was determined to 1.0 Å precision (heavy-atom root mean square deviation) on the basis of unambiguous restraints derived from four-dimensional (4D) HN-HN and 2D C-C NMR spectra.
Collapse
Affiliation(s)
- Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Pascal Fricke
- Department of Molecular Biophysics, Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Lin Lin
- Prokaryotic Cell Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Faculty of Biology, Philipps-Universität, 35043 Marburg, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Melanie Wegstroth
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Martin Thanbichler
- Prokaryotic Cell Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Faculty of Biology, Philipps-Universität, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Philipps-Universität, 35043 Marburg, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Corresponding author. E-mail:
| |
Collapse
|
32
|
Andreas LB, Stanek J, Le Marchand T, Bertarello A, Cala-De Paepe D, Lalli D, Krejčíková M, Doyen C, Öster C, Knott B, Wegner S, Engelke F, Felli IC, Pierattelli R, Dixon NE, Emsley L, Herrmann T, Pintacuda G. Protein residue linking in a single spectrum for magic-angle spinning NMR assignment. JOURNAL OF BIOMOLECULAR NMR 2015; 62:253-261. [PMID: 26078089 DOI: 10.1007/s10858-015-9956-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
Here we introduce a new pulse sequence for resonance assignment that halves the number of data sets required for sequential linking by directly correlating sequential amide resonances in a single diagonal-free spectrum. The method is demonstrated with both microcrystalline and sedimented deuterated proteins spinning at 60 and 111 kHz, and a fully protonated microcrystalline protein spinning at 111 kHz, with as little as 0.5 mg protein sample. We find that amide signals have a low chance of ambiguous linkage, which is further improved by linking in both forward and backward directions. The spectra obtained are amenable to automated resonance assignment using general-purpose software such as UNIO-MATCH.
Collapse
Affiliation(s)
- Loren B Andreas
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 69100, Villeurbanne, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gupta R, Hou G, Renirie R, Wever R, Polenova T. 51V NMR Crystallography of Vanadium Chloroperoxidase and Its Directed Evolution P395D/L241V/T343A Mutant: Protonation Environments of the Active Site. J Am Chem Soc 2015; 137:5618-28. [DOI: 10.1021/jacs.5b02635] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rupal Gupta
- Department
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Guangjin Hou
- Department
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Rokus Renirie
- Van’t
Hoff Institute for Molecular Science, University of Amsterdam, POSTBUS
94157, 1090 GD, Amsterdam, The Netherlands
| | - Ron Wever
- Van’t
Hoff Institute for Molecular Science, University of Amsterdam, POSTBUS
94157, 1090 GD, Amsterdam, The Netherlands
| | - Tatyana Polenova
- Department
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
34
|
Andreas LB, Le Marchand T, Jaudzems K, Pintacuda G. High-resolution proton-detected NMR of proteins at very fast MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:36-49. [PMID: 25797003 DOI: 10.1016/j.jmr.2015.01.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/23/2014] [Accepted: 01/04/2015] [Indexed: 05/18/2023]
Abstract
When combined with high-frequency (currently ∼60 kHz) magic-angle spinning (MAS), proton detection boosts sensitivity and increases coherence lifetimes, resulting in narrow ((1))H lines. Herein, we review methods for efficient proton detected techniques and applications in highly deuterated proteins, with an emphasis on 100% selected ((1))H site concentration for the purpose of sensitivity. We discuss the factors affecting resolution and sensitivity that have resulted in higher and higher frequency MAS. Next we describe the various methods that have been used for backbone and side-chain assignment with proton detection, highlighting the efficient use of scalar-based ((13))C-((13))C transfers. Additionally, we show new spectra making use of these schemes for side-chain assignment of methyl ((13))C-((1))H resonances. The rapid acquisition of resolved 2D spectra with proton detection allows efficient measurement of relaxation parameters used as a measure of dynamic processes. Under rapid MAS, relaxation times can be measured in a site-specific manner in medium-sized proteins, enabling the investigation of molecular motions at high resolution. Additionally, we discuss methods for measurement of structural parameters, including measurement of internuclear ((1))H-((1))H contacts and the use of paramagnetic effects in the determination of global structure.
Collapse
Affiliation(s)
- Loren B Andreas
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280/CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Villeurbanne, France
| | - Tanguy Le Marchand
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280/CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Villeurbanne, France
| | | | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280/CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Villeurbanne, France.
| |
Collapse
|