1
|
Baskaran K, Wilburn C, Wedell J, Koharudin L, Ulrich E, Schuyler A, Eghbalnia H, Gronenborn A, Hoch J. Anomalous amide proton chemical shifts as signatures of hydrogen bonding to aromatic sidechains. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:765-775. [PMID: 37905229 PMCID: PMC10539802 DOI: 10.5194/mr-2-765-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 11/02/2023]
Abstract
Hydrogen bonding between an amide group and the p-π cloud of an aromatic ring was first identified in a protein in the 1980s. Subsequent surveys of high-resolution X-ray crystal structures found multiple instances, but their preponderance was determined to be infrequent. Hydrogen atoms participating in a hydrogen bond to the p-π cloud of an aromatic ring are expected to experience an upfield chemical shift arising from a shielding ring current shift. We surveyed the Biological Magnetic Resonance Data Bank for amide hydrogens exhibiting unusual shifts as well as corroborating nuclear Overhauser effects between the amide protons and ring protons. We found evidence that Trp residues are more likely to be involved in p-π hydrogen bonds than other aromatic amino acids, whereas His residues are more likely to be involved in in-plane hydrogen bonds, with a ring nitrogen acting as the hydrogen acceptor. The p-π hydrogen bonds may be more abundant than previously believed. The inclusion in NMR structure refinement protocols of shift effects in amide protons from aromatic sidechains, or explicit hydrogen bond restraints between amides and aromatic rings, could improve the local accuracy of sidechain orientations in solution NMR protein structures, but their impact on global accuracy is likely be limited.
Collapse
Affiliation(s)
- Kumaran Baskaran
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Colin W. Wilburn
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Jonathan R. Wedell
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Leonardus M. I. Koharudin
- Department of Structural Biology University of Pittsburgh School of
Medicine 3501 Fifth Ave., Pittsburgh, PA 15260 USA
| | - Eldon L. Ulrich
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Adam D. Schuyler
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Hamid R. Eghbalnia
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Angela M. Gronenborn
- Department of Structural Biology University of Pittsburgh School of
Medicine 3501 Fifth Ave., Pittsburgh, PA 15260 USA
| | - Jeffrey C. Hoch
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| |
Collapse
|
2
|
Pérez-Conesa S, Keeler EG, Zhang D, Delemotte L, McDermott AE. Informing NMR experiments with molecular dynamics simulations to characterize the dominant activated state of the KcsA ion channel. J Chem Phys 2021; 154:165102. [PMID: 33940802 PMCID: PMC9250420 DOI: 10.1063/5.0040649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/26/2021] [Indexed: 11/14/2022] Open
Abstract
As the first potassium channel with an x-ray structure determined, and given its homology to eukaryotic channels, the pH-gated prokaryotic channel KcsA has been extensively studied. Nevertheless, questions related, in particular, to the allosteric coupling between its gates remain open. The many currently available x-ray crystallography structures appear to correspond to various stages of activation and inactivation, offering insights into the molecular basis of these mechanisms. Since these studies have required mutations, complexation with antibodies, and substitution of detergents in place of lipids, examining the channel under more native conditions is desirable. Solid-state nuclear magnetic resonance (SSNMR) can be used to study the wild-type protein under activating conditions (low pH), at room temperature, and in bacteriomimetic liposomes. In this work, we sought to structurally assign the activated state present in SSNMR experiments. We used a combination of molecular dynamics (MD) simulations, chemical shift prediction algorithms, and Bayesian inference techniques to determine which of the most plausible x-ray structures resolved to date best represents the activated state captured in SSNMR. We first identified specific nuclei with simulated NMR chemical shifts that differed significantly when comparing partially open vs fully open ensembles from MD simulations. The simulated NMR chemical shifts for those specific nuclei were then compared to experimental ones, revealing that the simulation of the partially open state was in good agreement with the SSNMR data. Nuclei that discriminate effectively between partially and fully open states belong to residues spread over the sequence and provide a molecular level description of the conformational change.
Collapse
Affiliation(s)
- Sergio Pérez-Conesa
- KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Eric G. Keeler
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Dongyu Zhang
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Lucie Delemotte
- KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Ann E. McDermott
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
3
|
MacCallum JL, Muniyat MI, Gaalswyk K. Online Optimization of Total Acceptance in Hamiltonian Replica Exchange Simulations. J Phys Chem B 2018; 122:5448-5457. [PMID: 29584433 DOI: 10.1021/acs.jpcb.7b11778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Replica exchange is a widely used sampling strategy in molecular simulation. While a variety of methods exist to optimize parameters for temperature replica exchange, less is known about how to optimize parameters for more general Hamiltonian replica exchange simulations. We present an algorithm for the online optimization of total acceptance for both temperature and Hamiltonian replica exchange simulations using stochastic gradient descent. We optimize the total acceptance, a heuristic objective function capturing the efficiency of replica exchange. Our approach is general and has several desirable properties, including: (1) it makes few assumptions about the system of interest, (2) optimization occurs online without the requirement of presimulation, and (3) most importantly, it readily generalizes to systems where there are multiple control parameters (e.g., temperatures, force constants, etc.) that determine the Hamiltonian of each replica. We explore some general properties of the algorithm on a simple harmonic oscillator system, and demonstrate its effectiveness on a more complex data-guided protein folding simulation.
Collapse
Affiliation(s)
- Justin L MacCallum
- Department of Chemistry , University of Calgary , Calgary AB T2N 1N4 , Canada
| | - Mir Ishruna Muniyat
- Department of Chemistry , University of Calgary , Calgary AB T2N 1N4 , Canada
| | - Kari Gaalswyk
- Department of Chemistry , University of Calgary , Calgary AB T2N 1N4 , Canada
| |
Collapse
|
4
|
Hafsa NE, Berjanskii MV, Arndt D, Wishart DS. Rapid and reliable protein structure determination via chemical shift threading. JOURNAL OF BIOMOLECULAR NMR 2018; 70:33-51. [PMID: 29196969 DOI: 10.1007/s10858-017-0154-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Protein structure determination using nuclear magnetic resonance (NMR) spectroscopy can be both time-consuming and labor intensive. Here we demonstrate how chemical shift threading can permit rapid, robust, and accurate protein structure determination using only chemical shift data. Threading is a relatively old bioinformatics technique that uses a combination of sequence information and predicted (or experimentally acquired) low-resolution structural data to generate high-resolution 3D protein structures. The key motivations behind using NMR chemical shifts for protein threading lie in the fact that they are easy to measure, they are available prior to 3D structure determination, and they contain vital structural information. The method we have developed uses not only sequence and chemical shift similarity but also chemical shift-derived secondary structure, shift-derived super-secondary structure, and shift-derived accessible surface area to generate a high quality protein structure regardless of the sequence similarity (or lack thereof) to a known structure already in the PDB. The method (called E-Thrifty) was found to be very fast (often < 10 min/structure) and to significantly outperform other shift-based or threading-based structure determination methods (in terms of top template model accuracy)-with an average TM-score performance of 0.68 (vs. 0.50-0.62 for other methods). Coupled with recent developments in chemical shift refinement, these results suggest that protein structure determination, using only NMR chemical shifts, is becoming increasingly practical and reliable. E-Thrifty is available as a web server at http://ethrifty.ca .
Collapse
Affiliation(s)
- Noor E Hafsa
- Department of Computing Science, University of Alberta, Edmonton, AB, T6G 2E8, Canada
| | - Mark V Berjanskii
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - David Arndt
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - David S Wishart
- Department of Computing Science, University of Alberta, Edmonton, AB, T6G 2E8, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
5
|
Sanz-Hernández M, De Simone A. The PROSECCO server for chemical shift predictions in ordered and disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2017; 69:147-156. [PMID: 29119515 PMCID: PMC5711976 DOI: 10.1007/s10858-017-0145-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
The chemical shifts measured in solution-state and solid-state nuclear magnetic resonance (NMR) are powerful probes of the structure and dynamics of protein molecules. The exploitation of chemical shifts requires methods to correlate these data with the protein structures and sequences. We present here an approach to calculate accurate chemical shifts in both ordered and disordered proteins using exclusively the information contained in their sequences. Our sequence-based approach, protein sequences and chemical shift correlations (PROSECCO), achieves the accuracy of the most advanced structure-based methods in the characterization of chemical shifts of folded proteins and improves the state of the art in the study of disordered proteins. Our analyses revealed fundamental insights on the structural information carried by NMR chemical shifts of structured and unstructured protein states.
Collapse
Affiliation(s)
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Unraveling the meaning of chemical shifts in protein NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1564-1576. [PMID: 28716441 DOI: 10.1016/j.bbapap.2017.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
Abstract
Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
|
7
|
Boulton S, Melacini G. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation. Chem Rev 2016; 116:6267-304. [PMID: 27111288 DOI: 10.1021/acs.chemrev.5b00718] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| |
Collapse
|