1
|
Klein A, Rovó P, Sakhrani VV, Wang Y, Holmes JB, Liu V, Skowronek P, Kukuk L, Vasa SK, Güntert P, Mueller LJ, Linser R. Atomic-resolution chemical characterization of (2x)72-kDa tryptophan synthase via four- and five-dimensional 1H-detected solid-state NMR. Proc Natl Acad Sci U S A 2022; 119:e2114690119. [PMID: 35058365 PMCID: PMC8795498 DOI: 10.1073/pnas.2114690119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
NMR chemical shifts provide detailed information on the chemical properties of molecules, thereby complementing structural data from techniques like X-ray crystallography and electron microscopy. Detailed analysis of protein NMR data, however, often hinges on comprehensive, site-specific assignment of backbone resonances, which becomes a bottleneck for molecular weights beyond 40 to 45 kDa. Here, we show that assignments for the (2x)72-kDa protein tryptophan synthase (665 amino acids per asymmetric unit) can be achieved via higher-dimensional, proton-detected, solid-state NMR using a single, 1-mg, uniformly labeled, microcrystalline sample. This framework grants access to atom-specific characterization of chemical properties and relaxation for the backbone and side chains, including those residues important for the catalytic turnover. Combined with first-principles calculations, the chemical shifts in the β-subunit active site suggest a connection between active-site chemistry, the electrostatic environment, and catalytically important dynamics of the portal to the β-subunit from solution.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Petra Rovó
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
| | - Varun V Sakhrani
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Yangyang Wang
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Jacob B Holmes
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Viktoriia Liu
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Patricia Skowronek
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
| | - Laura Kukuk
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Suresh K Vasa
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
- Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Leonard J Mueller
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Rasmus Linser
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany;
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
2
|
Löhr F, Gebel J, Henrich E, Hein C, Dötsch V. Towards complete polypeptide backbone NH assignment via combinatorial labeling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 302:50-63. [PMID: 30959416 DOI: 10.1016/j.jmr.2019.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Combinatorial selective isotope labeling is a valuable tool to facilitate polypeptide backbone resonance assignment in cases of low sensitivity or extensive chemical shift degeneracy. It involves recording of 15N-HSQC and 2D HN-projections of triple-resonance spectra on a limited set of samples containing different combinations of labeled and unlabeled amino acid types. Using labeling schemes in which the three backbone heteronuclei (amide nitrogen, α-carbon and carbonyl carbon) are enriched in 15N or 13C isotopes - individually as well as simultaneously - usually yields abundant amino-acid type information of consecutive residues i and i - 1. Although this results in a large number of anchor points that can be used in the sequential assignment process, for most amide signals the exact positioning of the corresponding residue the polypeptide sequence still relies on matching intra- and interresidual 13C chemical shifts obtained from 3D spectra. An obvious way to obtain more sequence-specific assignments directly with combinatorial labeling would be to increase the number of samples. This is, however, undesirable because of increased sample preparation efforts and costs. Irrespective of the number of samples, unambiguous assignments cannot be accomplished for i - 1/i pairs that are not unique in the sequence. Here we show that the ambiguity for non-unique pairs can be resolved by including information about the labeling state of residues i + 1 and i - 2. Application to a 35-residue peptide resulted in complete assignments of all detectable signals in the 15N HSQC which, due to its repetitive sequence and 13C chemical shift degeneracies, was difficult to achieve by other means. For a medium-sized protein (165 residues, rotational correlation time 8.2 ns) the improved protocol allowed the extent of backbone amide assignment to be expanded to 88% solely using a suite of 2D 1H-15N correlated spectra.
Collapse
Affiliation(s)
- Frank Löhr
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Jakob Gebel
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Erik Henrich
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Christopher Hein
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
3
|
Jenne A, Soong R, Bermel W, Sharma N, Masi A, Tabatabaei Anaraki M, Simpson A. Focusing on “the important” through targeted NMR experiments: an example of selective13C–12C bond detection in complex mixtures. Faraday Discuss 2019; 218:372-394. [DOI: 10.1039/c8fd00213d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, a targeted NMR experiment is introduced which selectively detects the formation of13C–12C bonds in mixtures.
Collapse
Affiliation(s)
- Amy Jenne
- Environmental NMR Centre
- University of Toronto
- Toronto
- Canada
| | - Ronald Soong
- Environmental NMR Centre
- University of Toronto
- Toronto
- Canada
| | | | - Nisha Sharma
- Department of Agronomy, Food, Natural Resources, Animals and the Environment
- University of Padova
- Padova
- Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and the Environment
- University of Padova
- Padova
- Italy
| | | | - Andre Simpson
- Environmental NMR Centre
- University of Toronto
- Toronto
- Canada
| |
Collapse
|
4
|
Pustovalova Y, Mayzel M, Orekhov VY. XLSY: Extra-Large NMR Spectroscopy. Angew Chem Int Ed Engl 2018; 57:14043-14045. [PMID: 30175546 PMCID: PMC6585689 DOI: 10.1002/anie.201806144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/24/2018] [Indexed: 11/23/2022]
Abstract
NMR studies of intrinsically disordered proteins and other complex biomolecular systems require spectra with the highest resolution and dimensionality. An efficient approach, extra‐large NMR spectroscopy, is presented for experimental data collection, reconstruction, and handling of very large NMR spectra by a combination of the radial and non‐uniform sampling, a new processing algorithm, and rigorous statistical validation. We demonstrate the first high‐quality reconstruction of a full seven‐dimensional HNCOCACONH and two five‐dimensional HACACONH and HN(CA)CONH experiments for a representative intrinsically disordered protein α‐synuclein. XLSY will significantly enhance the NMR toolbox in challenging biomolecular studies.
Collapse
Affiliation(s)
- Yulia Pustovalova
- Department of Chemistry and Molecular Biology, University of Gothenburg, P.O. Box 465, Gothenburg, 405 30, Sweden
| | - Maxim Mayzel
- Swedish NMR Centre, University of Gothenburg, P.O. Box 465, Gothenburg, 405 30, Sweden
| | - Vladislav Yu Orekhov
- Department of Chemistry and Molecular Biology, University of Gothenburg, P.O. Box 465, Gothenburg, 405 30, Sweden.,Swedish NMR Centre, University of Gothenburg, P.O. Box 465, Gothenburg, 405 30, Sweden
| |
Collapse
|
5
|
Affiliation(s)
- Yulia Pustovalova
- Department of Chemistry and Molecular Biology; University of Gothenburg; P.O. Box 465 Gothenburg 405 30 Sweden
| | - Maxim Mayzel
- Swedish NMR Centre; University of Gothenburg; P.O. Box 465 Gothenburg 405 30 Sweden
| | - Vladislav Yu. Orekhov
- Department of Chemistry and Molecular Biology; University of Gothenburg; P.O. Box 465 Gothenburg 405 30 Sweden
- Swedish NMR Centre; University of Gothenburg; P.O. Box 465 Gothenburg 405 30 Sweden
| |
Collapse
|
6
|
Grudziąż K, Zawadzka-Kazimierczuk A, Koźmiński W. High-dimensional NMR methods for intrinsically disordered proteins studies. Methods 2018; 148:81-87. [PMID: 29705209 DOI: 10.1016/j.ymeth.2018.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/24/2018] [Indexed: 01/16/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) are getting more and more interest of the scientific community. Nuclear magnetic resonance (NMR) is often a technique of choice for these studies, as it provides atomic-resolution information on structure, dynamics and interactions of IDPs. Nonetheless, NMR spectra of IDPs are typically extraordinary crowded, comparing to those of structured proteins. To overcome this problem, high-dimensional NMR experiments can be used, which allow for a better peak separation. In the present review different aspects of such experiments are discussed, from data acquisition and processing to analysis, focusing on experiments for resonance assignment.
Collapse
Affiliation(s)
- Katarzyna Grudziąż
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Zawadzka-Kazimierczuk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| |
Collapse
|
7
|
Simpson AJ, Simpson MJ, Soong R. Environmental Nuclear Magnetic Resonance Spectroscopy: An Overview and a Primer. Anal Chem 2017; 90:628-639. [PMID: 29131590 DOI: 10.1021/acs.analchem.7b03241] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NMR spectroscopy is a versatile tool for the study of structure and interactions in environmental media such as air, soil, and water as well as monitoring the metabolic responses of living organisms to an ever changing environment. Part review, part perspective, and part tutorial, this Feature is aimed at nonspecialists who are interested in learning more about the potential and impact of NMR spectroscopy in environmental research.
Collapse
Affiliation(s)
- André J Simpson
- Environmental NMR Centre and Department of Physical & Environmental Sciences, University of Toronto Scarborough , Toronto, Ontario, Canada , M1C 1A4
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical & Environmental Sciences, University of Toronto Scarborough , Toronto, Ontario, Canada , M1C 1A4
| | - Ronald Soong
- Environmental NMR Centre and Department of Physical & Environmental Sciences, University of Toronto Scarborough , Toronto, Ontario, Canada , M1C 1A4
| |
Collapse
|
8
|
Kosiński K, Stanek J, Górka MJ, Żerko S, Koźmiński W. Reconstruction of non-uniformly sampled five-dimensional NMR spectra by signal separation algorithm. JOURNAL OF BIOMOLECULAR NMR 2017; 68:129-138. [PMID: 28243768 PMCID: PMC5504137 DOI: 10.1007/s10858-017-0095-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/08/2017] [Indexed: 05/31/2023]
Abstract
A method for five-dimensional spectral reconstruction of non-uniformly sampled NMR data sets is proposed. It is derived from the previously published signal separation algorithm, with major alterations to avoid unfeasible processing of an entire five-dimensional spectrum. The proposed method allows credible reconstruction of spectra from as little as a few hundred data points and enables sensitive resonance detection in experiments with a high dynamic range of peak intensities. The efficiency of the method is demonstrated on two high-resolution spectra for rapid sequential assignment of intrinsically disordered proteins, namely 5D HN(CA)CONH and 5D (HACA)CON(CO)CONH.
Collapse
Affiliation(s)
- Krzysztof Kosiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Jan Stanek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Michał J Górka
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
- Faculty of Physics, Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Szymon Żerko
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| |
Collapse
|
9
|
Gibbs EB, Cook EC, Showalter SA. Application of NMR to studies of intrinsically disordered proteins. Arch Biochem Biophys 2017; 628:57-70. [PMID: 28502465 DOI: 10.1016/j.abb.2017.05.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022]
Abstract
The prevalence of intrinsically disordered protein regions, particularly in eukaryotic proteins, and their clear functional advantages for signaling and gene regulation have created an imperative for high-resolution structural and mechanistic studies. NMR spectroscopy has played a central role in enhancing not only our understanding of the intrinsically disordered native state, but also how that state contributes to biological function. While pathological functions associated with protein aggregation are well established, it has recently become clear that disordered regions also mediate functionally advantageous assembly into high-order structures that promote the formation of membrane-less sub-cellular compartments and even hydrogels. Across the range of functional assembly states accessed by disordered regions, post-translational modifications and regulatory macromolecular interactions, which can also be investigated by NMR spectroscopy, feature prominently. Here we will explore the many ways in which NMR has advanced our understanding of the physical-chemical phase space occupied by disordered protein regions and provide prospectus for the future role of NMR in this emerging and exciting field.
Collapse
Affiliation(s)
- Eric B Gibbs
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Erik C Cook
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
10
|
Göbl C, Resch M, Strickland M, Hartlmüller C, Viertler M, Tjandra N, Madl T. Increasing the Chemical-Shift Dispersion of Unstructured Proteins with a Covalent Lanthanide Shift Reagent. Angew Chem Int Ed Engl 2016; 55:14847-14851. [PMID: 27763708 PMCID: PMC5146990 DOI: 10.1002/anie.201607261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/16/2016] [Indexed: 01/19/2023]
Abstract
The study of intrinsically disordered proteins (IDPs) by NMR often suffers from highly overlapped resonances that prevent unambiguous chemical-shift assignments, and data analysis that relies on well-separated resonances. We present a covalent paramagnetic lanthanide-binding tag (LBT) for increasing the chemical-shift dispersion and facilitating the chemical-shift assignment of challenging, repeat-containing IDPs. Linkage of the DOTA-based LBT to a cysteine residue induces pseudo-contact shifts (PCS) for resonances more than 20 residues from the spin-labeling site. This leads to increased chemical-shift dispersion and decreased signal overlap, thereby greatly facilitating chemical-shift assignment. This approach is applicable to IDPs of varying sizes and complexity, and is particularly helpful for repeat-containing IDPs and low-complexity regions. This results in improved efficiency for IDP analysis and binding studies.
Collapse
Affiliation(s)
- Christoph Göbl
- Center for Integrated Protein Science MunichTechnische Universität MünchenDepartment of ChemistryLichtenbergstraße 485748GarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenIngolstädter Landstr. 185764NeuherbergGermany
| | - Moritz Resch
- Center for Integrated Protein Science MunichTechnische Universität MünchenDepartment of ChemistryLichtenbergstraße 485748GarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenIngolstädter Landstr. 185764NeuherbergGermany
| | - Madeleine Strickland
- Laboratory of Structural Biophysics Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBuilding 50BethesdaMD20814USA
| | - Christoph Hartlmüller
- Center for Integrated Protein Science MunichTechnische Universität MünchenDepartment of ChemistryLichtenbergstraße 485748GarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenIngolstädter Landstr. 185764NeuherbergGermany
| | - Martin Viertler
- Institute of Structural BiologyHelmholtz Zentrum MünchenIngolstädter Landstr. 185764NeuherbergGermany
| | - Nico Tjandra
- Laboratory of Structural Biophysics Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBuilding 50BethesdaMD20814USA
| | - Tobias Madl
- Center for Integrated Protein Science MunichTechnische Universität MünchenDepartment of ChemistryLichtenbergstraße 485748GarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenIngolstädter Landstr. 185764NeuherbergGermany
- Institute of Molecular Biology & BiochemistryCenter of Molecular MedicineMedical University of Graz8010GrazAustria
| |
Collapse
|
11
|
Göbl C, Resch M, Strickland M, Hartlmüller C, Viertler M, Tjandra N, Madl T. Verbesserung der Dispersion der chemischen Verschiebungen von unstrukturierten Proteinen durch einen kovalent gebundenen Lanthanoidkomplex. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christoph Göbl
- Center for Integrated Protein Science Munich; Technische Universität München; Fakultät für Chemie; Lichtenbergstraße 4 85748 Garching Deutschland
- Institut für Strukturbiologie; Helmholtz Zentrum München; Ingolstädter Landstr. 1 85764 Neuherberg Deutschland
| | - Moritz Resch
- Center for Integrated Protein Science Munich; Technische Universität München; Fakultät für Chemie; Lichtenbergstraße 4 85748 Garching Deutschland
- Institut für Strukturbiologie; Helmholtz Zentrum München; Ingolstädter Landstr. 1 85764 Neuherberg Deutschland
| | - Madeleine Strickland
- Laboratory of Structural Biophysics Biochemistry and Biophysics Center; National Heart, Lung, and Blood Institute; National Institutes of Health; Building 50 Bethesda MD 20814 USA
| | - Christoph Hartlmüller
- Center for Integrated Protein Science Munich; Technische Universität München; Fakultät für Chemie; Lichtenbergstraße 4 85748 Garching Deutschland
- Institut für Strukturbiologie; Helmholtz Zentrum München; Ingolstädter Landstr. 1 85764 Neuherberg Deutschland
| | - Martin Viertler
- Institut für Strukturbiologie; Helmholtz Zentrum München; Ingolstädter Landstr. 1 85764 Neuherberg Deutschland
| | - Nico Tjandra
- Laboratory of Structural Biophysics Biochemistry and Biophysics Center; National Heart, Lung, and Blood Institute; National Institutes of Health; Building 50 Bethesda MD 20814 USA
| | - Tobias Madl
- Center for Integrated Protein Science Munich; Technische Universität München; Fakultät für Chemie; Lichtenbergstraße 4 85748 Garching Deutschland
- Institut für Strukturbiologie; Helmholtz Zentrum München; Ingolstädter Landstr. 1 85764 Neuherberg Deutschland
- Institut für Molekularbiologie & Biochemie; Zentrum für Medizinische Forschung; Medizinische Universität Graz; 8010 Graz Österreich
| |
Collapse
|
12
|
Żerko S, Byrski P, Włodarczyk-Pruszyński P, Górka M, Ledolter K, Masliah E, Konrat R, Koźmiński W. Five and four dimensional experiments for robust backbone resonance assignment of large intrinsically disordered proteins: application to Tau3x protein. JOURNAL OF BIOMOLECULAR NMR 2016; 65:193-203. [PMID: 27430223 PMCID: PMC4983291 DOI: 10.1007/s10858-016-0048-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/09/2016] [Indexed: 05/04/2023]
Abstract
New experiments dedicated for large IDPs backbone resonance assignment are presented. The most distinctive feature of all described techniques is the employment of MOCCA-XY16 mixing sequences to obtain effective magnetization transfers between carbonyl carbon backbone nuclei. The proposed 4 and 5 dimensional experiments provide a high dispersion of obtained signals making them suitable for use in the case of large IDPs (application to 354 a. a. residues of Tau protein 3x isoform is presented) as well as provide both forward and backward connectivities. What is more, connecting short chains interrupted with proline residues is also possible. All the experiments employ non-uniform sampling.
Collapse
Affiliation(s)
- Szymon Żerko
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02093, Warsaw, Poland
| | - Piotr Byrski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02093, Warsaw, Poland
| | | | - Michał Górka
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02093, Warsaw, Poland
- Section of Biophysics, Faculty of Physics, University of Warsaw, 02093, Warsaw, Poland
| | - Karin Ledolter
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Eliezer Masliah
- Departments of Neuroscience and Pathology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert Konrat
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02093, Warsaw, Poland.
| |
Collapse
|
13
|
Wiedemann C, Bellstedt P, Häfner S, Herbst C, Bordusa F, Görlach M, Ohlenschläger O, Ramachandran R. A Set of Efficient nD NMR Protocols for Resonance Assignments of Intrinsically Disordered Proteins. Chemphyschem 2016; 17:1961-8. [PMID: 27061973 DOI: 10.1002/cphc.201600155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 11/07/2022]
Abstract
The RF pulse scheme RN[N-CA HEHAHA]NH, which provides a convenient approach to the acquisition of different multidimensional chemical shift correlation NMR spectra leading to backbone resonance assignments, including those of the proline residues of intrinsically disordered proteins (IDPs), is experimentally demonstrated. Depending on the type of correlation data required, the method involves the generation of in-phase ((15) N)(x) magnetisation via different magnetisation transfer pathways such as H→N→CO→N, HA→CA→CO→N, H→N→CA→N and H→CA→N, the subsequent application of (15) N-(13) C(α) heteronuclear Hartmann-Hahn mixing over a period of ≈100 ms, chemical-shift labelling of relevant nuclei before and after the heteronuclear mixing step and amide proton detection in the acquisition dimension. It makes use of the favourable relaxation properties of IDPs and the presence of (1) JCαN and (2) JCαN couplings to achieve efficient correlation of the backbone resonances of each amino acid residue "i" with the backbone amide resonances of residues "i-1" and "i+1". It can be implemented in a straightforward way through simple modifications of the RF pulse schemes commonly employed in protein NMR studies. The efficacy of the approach is demonstrated using a uniformly ((15) N,(13) C) labelled sample of α-synuclein. The different possibilities for obtaining the amino-acid-type information, simultaneously with the connectivity data between the backbone resonances of sequentially neighbouring residues, have also been outlined.
Collapse
Affiliation(s)
- Christoph Wiedemann
- Institute of Biochemistry/Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany
| | - Peter Bellstedt
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Humboldstr. 10, 07743, Jena, Germany
| | - Sabine Häfner
- Leibniz Institute on Aging/Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
| | - Christian Herbst
- Department of Physics, Faculty of Science, Ubon Ratchathani University, 34190, Ubon Ratchathani, Thailand
| | - Frank Bordusa
- Institute of Biochemistry/Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany
| | - Matthias Görlach
- Leibniz Institute on Aging/Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
| | - Oliver Ohlenschläger
- Leibniz Institute on Aging/Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
| | - Ramadurai Ramachandran
- Leibniz Institute on Aging/Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|