1
|
Březina V, Hanyková L, Velychkivska N, Hill JP, Labuta J. NMR lineshape analysis using analytical solutions of multi-state chemical exchange with applications to kinetics of host-guest systems. Sci Rep 2022; 12:17369. [PMID: 36253475 PMCID: PMC9576801 DOI: 10.1038/s41598-022-20136-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/08/2022] [Indexed: 01/10/2023] Open
Abstract
Nuclear magnetic resonance (NMR) lineshape analysis is a powerful tool for the study of chemical kinetics. Here we provide techniques for analysis of the relationship between experimentally observed spin kinetics (transitions between different environments [Formula: see text]) and corresponding chemical kinetics (transitions between distinct chemical species; e.g., free host and complexed host molecule). The advantages of using analytical solutions for two-, three- or generally N-state exchange lineshapes (without J-coupling) over the widely used numerical calculation for NMR spectral fitting are presented. Several aspects of exchange kinetics including the generalization of coalescence conditions in two-state exchange, the possibility of multiple processes between two states, and differences between equilibrium and steady-state modes are discussed. 'Reduced equivalent schemes' are introduced for spin kinetics containing fast-exchanging states, effectively reducing the number of exchanging states. The theoretical results have been used to analyze a host-guest system containing an oxoporphyrinogen complexed with camphorsulfonic acid and several other literature examples, including isomerization, protein kinetics, or enzymatic reactions. The theoretical treatment and experimental examples present an expansion of the systematic approach to rigorous analyses of systems with rich chemical kinetics through NMR lineshape analysis.
Collapse
Affiliation(s)
- Václav Březina
- grid.21941.3f0000 0001 0789 6880International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 Japan ,grid.4491.80000 0004 1937 116XFaculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Lenka Hanyková
- grid.4491.80000 0004 1937 116XFaculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Nadiia Velychkivska
- grid.21941.3f0000 0001 0789 6880International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 Japan ,grid.418095.10000 0001 1015 3316Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Jonathan P. Hill
- grid.21941.3f0000 0001 0789 6880International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 Japan
| | - Jan Labuta
- grid.21941.3f0000 0001 0789 6880International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 Japan
| |
Collapse
|
2
|
Heymann D, Mohanram H, Kumar A, Verma CS, Lescar J, Miserez A. Structure of a consensus chitin-binding domain revealed by solution NMR. J Struct Biol 2021; 213:107725. [PMID: 33744410 DOI: 10.1016/j.jsb.2021.107725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 11/29/2022]
Abstract
Chitin-binding proteins (CBPs) are a versatile group of proteins found in almost every organism on earth. CBPs are involved in enzymatic carbohydrate degradation and also serve as templating scaffolds in the exoskeleton of crustaceans and insects. One specific chitin-binding motif found across a wide range of arthropods' exoskeletons is the "extended Rebers and Riddiford" consensus (R&R), whose mechanism of chitin binding remains unclear. Here, we report the 3D structure and molecular level interactions of a chitin-binding domain (CBD-γ) located in a CBP from the beak of the jumbo squid Dosidicus gigas. This CBP is one of four chitin-binding proteins identified in the beak mouthpart of D. gigas and is believed to interact with chitin to form a scaffold network that is infiltrated with a second set of structural proteins during beak maturation. We used solution state NMR spectroscopy to elucidate the molecular interactions between CBD-γ and the soluble chitin derivative pentaacetyl-chitopentaose (PCP), and find that folding of CBD-γ is triggered upon its interaction with PCP. To our knowledge, this is the first experimental 3D structure of a CBP containing the R&R consensus motif, which can be used as a template to understand in more details the role of the R&R motif found in a wide range of CBP-chitin complexes. The present structure also provides molecular information for biomimetic synthesis of graded biomaterials using aqueous-based chemistry and biopolymers.
Collapse
Affiliation(s)
- Dario Heymann
- Biological and Biomimetic Material Laboratory, Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 637553, Singapore; NTU Institute of Structural Biology, Experimental Medicine Building (EMB), 59 Nanyang Drive, Level 06-01, Singapore 636921, Singapore
| | - Harini Mohanram
- Biological and Biomimetic Material Laboratory, Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 637553, Singapore
| | - Akshita Kumar
- Biological and Biomimetic Material Laboratory, Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 637553, Singapore; Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Chandra S Verma
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore 637551, Singapore; Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore (NUS), 16 Science Drive 4, Singapore 117558, Singapore
| | - Julien Lescar
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Experimental Medicine Building (EMB), 59 Nanyang Drive, Level 06-01, Singapore 636921, Singapore.
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory, Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 637553, Singapore; School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Experimental Medicine Building (EMB), 59 Nanyang Drive, Level 06-01, Singapore 636921, Singapore.
| |
Collapse
|
3
|
Ben Bdira F, Waudby CA, Volkov AN, Schröder SP, AB E, Codée JDC, Overkleeft HS, Aerts JMFG, Ingen H, Ubbink M. Dynamics of Ligand Binding to a Rigid Glycosidase**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fredj Ben Bdira
- Department of Macromolecular Biochemistry Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Christopher A. Waudby
- Institute of Structural and Molecular Biology University College London and Birkbeck College London WC1E 6BT UK
| | - Alexander N. Volkov
- VIB-VUB Center for Structural Biology Pleinlaan 2 1050 Brussels Belgium
- Jean Jeener NMR Centre VUB Pleinlaan 2 1050 Brussels Belgium
| | - Sybrin P. Schröder
- Department of Bio-organic Synthesis Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Eiso AB
- ZoBio BV BioPartner 2 building J.H. Oortweg 19 2333 CH Leiden The Netherlands
| | - Jeroen D. C. Codée
- Department of Bio-organic Synthesis Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Hermen S. Overkleeft
- Department of Bio-organic Synthesis Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Hugo Ingen
- Department of Macromolecular Biochemistry Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
- Present address: NMR Spectroscopy Research Group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Marcellus Ubbink
- Department of Macromolecular Biochemistry Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
4
|
Ben Bdira F, Waudby CA, Volkov AN, Schröder SP, AB E, Codée JDC, Overkleeft HS, Aerts JMFG, van Ingen H, Ubbink M. Dynamics of Ligand Binding to a Rigid Glycosidase*. Angew Chem Int Ed Engl 2020; 59:20508-20514. [PMID: 32533782 PMCID: PMC7693232 DOI: 10.1002/anie.202003236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Indexed: 11/09/2022]
Abstract
The single-domain GH11 glycosidase from Bacillus circulans (BCX) is involved in the degradation of hemicellulose, which is one of the most abundant renewable biomaterials in nature. We demonstrate that BCX in solution undergoes minimal structural changes during turnover. NMR spectroscopy results show that the rigid protein matrix provides a frame for fast substrate binding in multiple conformations, accompanied by slow conversion, which is attributed to an enzyme-induced substrate distortion. A model is proposed in which the rigid enzyme takes advantage of substrate flexibility to induce a conformation that facilitates the acyl formation step of the hydrolysis reaction.
Collapse
Affiliation(s)
- Fredj Ben Bdira
- Department of Macromolecular BiochemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Christopher A. Waudby
- Institute of Structural and Molecular BiologyUniversity College London and Birkbeck CollegeLondonWC1E 6BTUK
| | - Alexander N. Volkov
- VIB-VUB Center for Structural BiologyPleinlaan 21050BrusselsBelgium
- Jean Jeener NMR CentreVUBPleinlaan 21050BrusselsBelgium
| | - Sybrin P. Schröder
- Department of Bio-organic SynthesisLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Eiso AB
- ZoBio BVBioPartner 2 buildingJ.H. Oortweg 192333 CHLeidenThe Netherlands
| | - Jeroen D. C. Codée
- Department of Bio-organic SynthesisLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Hermen S. Overkleeft
- Department of Bio-organic SynthesisLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical BiochemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Hugo van Ingen
- Department of Macromolecular BiochemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
- Present address: NMR Spectroscopy Research GroupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Marcellus Ubbink
- Department of Macromolecular BiochemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
5
|
Harkness RW, Toyama Y, Kay LE. Analyzing multi-step ligand binding reactions for oligomeric proteins by NMR: Theoretical and computational considerations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 318:106802. [PMID: 32818875 DOI: 10.1016/j.jmr.2020.106802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Solution NMR spectroscopy is widely used to investigate the thermodynamics and kinetics of the binding of ligands to their biological receptors, as it provides detailed, atomistic information, potentially leading to microscopic affinities for each binding event, and, to the development of allosteric pathways describing how the binding at one site affects distal sites in the molecule. Importantly, weak interactions that are often invisible to other biophysical methods can also be probed. Methodological advancements in NMR have enabled the investigation of high molecular weight, homo-oligomeric complexes that bind multiple ligand molecules, with increasing numbers of studies of the structural dynamics and binding properties of these systems. It therefore becomes of interest to consider how binding and kinetics parameters can be extracted from experiments on these more complicated molecules. Here we present the theoretical framework for analyzing binding reactions of homo-oligomeric complexes by NMR, taking into account all of the chemical species in solution and their corresponding NMR observables. A number of simulations are presented to illustrate the utility of the derived expressions.
Collapse
Affiliation(s)
- Robert W Harkness
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Yuki Toyama
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Lewis E Kay
- Departments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada; The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada.
| |
Collapse
|
6
|
NMR and computational methods for molecular resolution of allosteric pathways in enzyme complexes. Biophys Rev 2019; 12:155-174. [PMID: 31838649 DOI: 10.1007/s12551-019-00609-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
Allostery is a ubiquitous biological mechanism in which a distant binding site is coupled to and drastically alters the function of a catalytic site in a protein. Allostery provides a high level of spatial and temporal control of the integrity and activity of biomolecular assembles composed of proteins, nucleic acids, or small molecules. Understanding the physical forces that drive allosteric coupling is critical to harnessing this process for use in bioengineering, de novo protein design, and drug discovery. Current microscopic models of allostery highlight the importance of energetics, structural rearrangements, and conformational fluctuations, and in this review, we discuss the synergistic use of solution NMR spectroscopy and computational methods to probe these phenomena in allosteric systems, particularly protein-nucleic acid complexes. This combination of experimental and theoretical techniques facilitates an unparalleled detection of subtle changes to structural and dynamic equilibria in biomolecules with atomic resolution, and we provide a detailed discussion of specialized NMR experiments as well as the complementary methods that provide valuable insight into allosteric pathways in silico. Lastly, we highlight two case studies to demonstrate the adaptability of this approach to enzymes of varying size and mechanistic complexity.
Collapse
|
7
|
NmrLineGuru: Standalone and User-Friendly GUIs for Fast 1D NMR Lineshape Simulation and Analysis of Multi-State Equilibrium Binding Models. Sci Rep 2019; 9:16023. [PMID: 31690758 PMCID: PMC6831641 DOI: 10.1038/s41598-019-52451-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/14/2019] [Indexed: 11/08/2022] Open
Abstract
The ability of high-resolution NMR spectroscopy to readout the response of molecular interactions at multiple atomic sites presents a unique capability to define thermodynamic equilibrium constants and kinetic rate constants for complex, multiple-step biological interactions. Nonetheless, the extraction of the relevant equilibrium binding and rate constants requires the appropriate analysis of not only a readout that follows the equilibrium concentrations of typical binding titration curves, but also the lineshapes of NMR spectra. To best take advantage of NMR data for characterizing molecular interactions, we developed NmrLineGuru, a software tool with a user-friendly graphical user interface (GUI) to model two-state, three-state, and four-state binding processes. Application of NmrLineGuru is through stand-alone GUIs, with no dependency on other software and no scripted input. NMR spectra can be fitted or simulated starting with user-specified input parameters and a chosen kinetic model. The ability to both simulate and fit NMR spectra provides the user the opportunity to not only determine the binding parameters that best reproduce the measured NMR spectra for the selected kinetic model, but to also query the possibility that alternative models agree with the data. NmrLineGuru is shown to provide an accurate, quantitative analysis of complex molecular interactions.
Collapse
|
8
|
Quantification of reaction cycle parameters for an essential molecular switch in an auxin-responsive transcription circuit in rice. Proc Natl Acad Sci U S A 2019; 116:2589-2594. [PMID: 30696765 DOI: 10.1073/pnas.1817038116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Protein-based molecular switches play critical roles in biological processes. The importance of the prolyl cis-trans switch is underscored by the ubiquitous presence of peptidyl prolyl isomerases such as cyclophilins that accelerate the intrinsically slow isomerization rate. In rice, a tryptophan-proline (W-P) cis-trans switch in transcription repressor protein OsIAA11 along with its associated cyclophilin LRT2 are essential components in a negative feedback gene regulation circuit that controls lateral root initiation in response to the plant hormone auxin. Importantly, no quantitative characterizations of the individual (microscopic) thermodynamic and kinetic parameters for any cyclophilin-catalyzed W-P isomerization have been reported. Here we present NMR studies that determine and independently validate these parameters for LRT2 catalysis of the W-P motif in OsIAA11, providing predictive power for understanding the role of this switch in the auxin-responsive circuit and the resulting lateral rootless phenotype in rice. We show that the observed isomerization rate is linearly dependent on LRT2 concentration but is independent of OsIAA11 concentration over a wide range, and LRT2 is optimally tuned to maintain OsIAA11 at its cis-trans equilibrium to supply the slower downstream cis-specific proteasomal degradation with maximal OsIAA11 substrate. This indicates that accelerating the LRT2-catalyzed isomerization would not accelerate OsIAA degradation, whereas decreasing this rate via targeted mutation could reveal relationships between circuit dynamics and lateral root development. Moreover, we show that sequences flanking the highly conserved Aux/IAA W-P motif do not impact LRT2 catalysis, suggesting that the parameters determined here are broadly applicable across highly conserved cyclophilins and their Aux/IAA targets.
Collapse
|
9
|
Fukamizo T, Shinya S. Chitin/Chitosan-Active Enzymes Involved in Plant–Microbe Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:253-272. [DOI: 10.1007/978-981-13-7318-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Ardá A, Jiménez-Barbero J. The recognition of glycans by protein receptors. Insights from NMR spectroscopy. Chem Commun (Camb) 2018; 54:4761-4769. [PMID: 29662983 DOI: 10.1039/c8cc01444b] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbohydrates (glycans, saccharides, sugars) are everywhere. In fact, glycan-protein interactions are involved in many essential processes of life and disease. The understanding of the key structural details at the atomic and molecular level is of paramount importance to effectively design molecules for therapeutic purposes. Different approximations may be employed to decipher these molecular recognition processes with high resolution. Advances in cryo-electron microscopy are providing exquisite details on different biological mechanisms involving sugars, while better and better protocols for structural refinement in the application of X-ray methods for protein-sugar complexes and glycoproteins are also permitting fantastic advances in the glycoscience arena. Alternatively, NMR spectroscopy remains as one of the most rewarding techniques to explore protein-carbohydrate interactions. In fact, given the intrinsic dynamic nature of saccharides, NMR can afford exquisite structural information at the atomic detail, not accessible by other techniques. However, the access to this information is sometimes intricate, and requires careful analysis and well-defined strategies. In this review, we have highlighted these issues and presented an overview of different modern NMR approaches with a focus on the latest developments and challenges.
Collapse
Affiliation(s)
- Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.
| | | |
Collapse
|
11
|
Expression and characterization of a novel cold-adapted chitosanase suitable for chitooligosaccharides controllable preparation. Food Chem 2018; 253:139-147. [PMID: 29502814 DOI: 10.1016/j.foodchem.2018.01.137] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/01/2017] [Accepted: 01/22/2018] [Indexed: 01/20/2023]
Abstract
Chitooligosaccharide is widely used as a functional food additive and a valuable pharmacological agent. The transformation of chitinous biomass into valuable bioactive chitooligosaccharides is one of the most exciting applications of chitosanase. A novel glycoside hydrolase (GH) family 46 chitosanase (GsCsn46A) from rhizobacterium Gynuella sunshinyii was cloned and heterologously expressed in Escherichia coli. GsCsn46A showed maximal activity at pH 5.5 and 30 °C. GsCsn46A featured remarkable cold-adapted property, which controllably hydrolyzed chitosan to three types of chitooligosaccharides at the mild reaction condition (reaction condition: pH 5.5 at 30 °C; method for stopping the reaction: 50 °C for 30 min). The yields of three types of chitooligosaccharides products (degree of polymerization (DP): 2-7, 2-5 and 2-3) were 70.9%, 87.1% and 94.6% respectively. This novel cold-adapted chitosanase provides a cleaner production process for the controllable preparation of chitooligosaccharides with the specific DP.
Collapse
|
12
|
Multi-color single-molecule tracking and subtrajectory analysis for quantification of spatiotemporal dynamics and kinetics upon T cell activation. Sci Rep 2017; 7:6994. [PMID: 28765585 PMCID: PMC5539329 DOI: 10.1038/s41598-017-06960-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/20/2017] [Indexed: 11/08/2022] Open
Abstract
The dynamic properties of molecules in living cells are attracting increasing interest. We propose a new method, moving subtrajectory analysis using single-molecule tracking, and demonstrate its utility in the spatiotemporal quantification of not only dynamics but also the kinetics of interactions using single-color images. Combining this technique with three-color simultaneous single-molecule imaging, we quantified the dynamics and kinetics of molecules in spatial relation to T cell receptor (TCR) microclusters, which trigger TCR signaling. CD3ε, a component of the TCR/CD3 complex, and CD45, a phosphatase positively and negatively regulating signaling, were each found in two mobility states: faster (associated) and slower (dissociated) states. Dynamics analysis suggests that the microclusters are loosely composed of heterogeneous nanoregions, possibly surrounded by a weak barrier. Kinetics analysis quantified the association and dissociation rates of interactions with the microclusters. The associations of both CD3ε and CD45 were single-step processes. In contrast, their dissociations were each composed of two components, indicating transient and stable associated states. Inside the microclusters, the association was accelerated, and the stable association was increased. Only CD45 showed acceleration of association at the microcluster boundary, suggesting specific affinity on the boundary. Thus, this method is an innovative and versatile tool for spatiotemporal quantification.
Collapse
|