1
|
Khandave NP, Tiwari VP, Vallurupalli P. Using the amide 15N CEST NMR experiment to study slow exchange between 'visible' protein states. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2025; 375:107883. [PMID: 40311447 DOI: 10.1016/j.jmr.2025.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025]
Abstract
Slow exchange between 'visible' protein states is often studied using the two-dimensional ZZ exchange class of magnetisation transfer experiments. However, the cross-peaks that arise due to magnetisation transfer between different states can lead to additional overlap in the two-dimensional ZZ exchange NMR spectrum. To overcome this overlap problem, here we have explored the utility of the 15N CEST experiment as an alternative to the 1HN-15N ZZ exchange experiment to study exchange between 'visible' protein states. In the case of two-state exchange, the 1HN-15N correlation map contains two correlations for each exchanging site, one arising from each state. Thus, two 15N CEST profiles can be recorded for each of these sites using a single 15N CEST experiment. We find that site-specific exchange parameters can then be obtained by simultaneously analysing both these 15N CEST profiles recorded at a single 'high' B1 field supplemented with experimentally derived information regarding the initial magnetisation or as in the case of the ZZ exchange experiment, the minor state population. The utility of the 15N CEST based approach to characterise exchange between visible protein states is demonstrated by studying the interconversion of the ∼18 kDa T34A mutant of T4 lysozyme between its native state and a minor state populated to ∼21 % (exchange rate ∼5 s-1) at 40 °C.
Collapse
Affiliation(s)
- Nihar Pradeep Khandave
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - Ved Prakash Tiwari
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India.
| |
Collapse
|
2
|
Kasai T, Kigawa T. Autonomous adaptive optimization of NMR experimental conditions for precise inference of minor conformational states of proteins based on chemical exchange saturation transfer. PLoS One 2025; 20:e0321692. [PMID: 40378160 DOI: 10.1371/journal.pone.0321692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/10/2025] [Indexed: 05/18/2025] Open
Abstract
In scientific experiments where measurement sensitivity is a major limiting factor, the optimization of experimental conditions, such as measurement parameters, is essential to maximize the information obtained per unit time and the number of experiments performed. When optimization in advance is not possible because of limited prior knowledge of the system, autonomous, adaptive optimization must be implemented during the experiment. One approach to this involves sequential Bayesian optimal experimental design, which adopts mutual information as the utility function to be maximized. In this study, we applied this optimization method to the chemical exchange saturation transfer (CEST) experiment in nuclear magnetic resonance (NMR) spectroscopy, which is used to study minor but functionally important invisible states of certain molecules, such as proteins. Adaptive optimization was utilized because prior knowledge of minor states is limited. To this end, we developed an adaptive optimization system of 15N-CEST experimental conditions for proteins using Markov chain Monte Carlo (MCMC) to calculate the posterior distribution and utility function. To ensure the completion of MCMC computations within a reasonable period with sufficient precision, we developed a second-order approximation of the CEST forward model. Both simulations and actual measurements using the FF domain of the HYPA/FBP11 protein with the A39G mutation demonstrated that the adaptive method outperformed the conventional one in terms of estimation precision of minor-state parameters based on equal numbers of measurements. Because the algorithm used for the evaluation of the utility function is independent of the type of experiment, the proposed method can be applied to various spectroscopic measurements in addition to NMR, if the forward model or its approximation can be calculated sufficiently quickly.
Collapse
Affiliation(s)
- Takuma Kasai
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
- Research DX Foundation Team, TRIP Headquarters, RIKEN, Yokohama, Kanagawa, Japan
| | - Takanori Kigawa
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
- NMR Operation Team, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| |
Collapse
|
3
|
Khandave NP, Sekhar A, Vallurupalli P. Studying micro to millisecond protein dynamics using simple amide 15N CEST experiments supplemented with major-state R 2 and visible peak-position constraints. JOURNAL OF BIOMOLECULAR NMR 2023; 77:165-181. [PMID: 37300639 PMCID: PMC7615914 DOI: 10.1007/s10858-023-00419-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Over the last decade amide 15N CEST experiments have emerged as a popular tool to study protein dynamics that involves exchange between a 'visible' major state and sparsely populated 'invisible' minor states. Although initially introduced to study exchange between states that are in slow exchange with each other (typical exchange rates of, 10 to 400 s-1), they are now used to study interconversion between states on the intermediate to fast exchange timescale while still using low to moderate (5 to 350 Hz) 'saturating' B1 fields. The 15N CEST experiment is very sensitive to exchange as the exchange delay TEX can be quite long (~0.5 s) allowing for a large number of exchange events to occur making it a very powerful tool to detect minor sates populated ([Formula: see text]) to as low as 1%. When systems are in fast exchange and the 15N CEST data has to be described using a model that contains exchange, the exchange parameters are often poorly defined because the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus exchange rate ([Formula: see text]) plots can be quite flat with shallow or no minima and the analysis of such 15N CEST data can lead to wrong estimates of the exchange parameters due to the presence of 'spurious' minima. Here we show that the inclusion of experimentally derived constraints on the intrinsic transverse relaxation rates and the inclusion of visible state peak-positions during the analysis of amide 15N CEST data acquired with moderate B1 values (~50 to ~350 Hz) results in convincing minima in the [Formula: see text] versus [Formula: see text] and the [Formula: see text] versus [Formula: see text] plots even when exchange occurs on the 100 μs timescale. The utility of this strategy is demonstrated on the fast-folding Bacillus stearothermophilus peripheral subunit binding domain that folds with a rate constant ~104 s-1. Here the analysis of 15N CEST data alone results in [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots that contain shallow minima, but the inclusion of visible-state peak positions and restraints on the intrinsic transverse relaxation rates of both states during the analysis of the 15N CEST data results in pronounced minima in the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots and precise exchange parameters even in the fast exchange regime ([Formula: see text]~5). Using this strategy we find that the folding rate constant of PSBD is invariant (~10,500 s-1) from 33.2 to 42.9 °C while the unfolding rates (~70 to ~500 s-1) and unfolded state populations (~0.7 to ~4.3%) increase with temperature. The results presented here show that protein dynamics occurring on the 10 to 104 s-1 timescale can be studied using amide 15N CEST experiments.
Collapse
Affiliation(s)
- Nihar Pradeep Khandave
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India.
| |
Collapse
|
4
|
Rennella E, Sahtoe DD, Baker D, Kay LE. Exploiting conformational dynamics to modulate the function of designed proteins. Proc Natl Acad Sci U S A 2023; 120:e2303149120. [PMID: 37094170 PMCID: PMC10161014 DOI: 10.1073/pnas.2303149120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 04/26/2023] Open
Abstract
With the recent success in calculating protein structures from amino acid sequences using artificial intelligence-based algorithms, an important next step is to decipher how dynamics is encoded by the primary protein sequence so as to better predict function. Such dynamics information is critical for protein design, where strategies could then focus not only on sequences that fold into particular structures that perform a given task, but would also include low-lying excited protein states that could influence the function of the designed protein. Herein, we illustrate the importance of dynamics in modulating the function of C34, a designed α/β protein that captures β-strands of target ligands and is a member of a family of proteins designed to sequester β-strands and β hairpins of aggregation-prone molecules that lead to a variety of pathologies. Using a strategy to "see" regions of apo C34 that are invisible to NMR spectroscopy as a result of pervasive conformational exchange, as well as a mutagenesis approach whereby C34 molecules are stabilized into a single conformer, we determine the structures of the predominant conformations that are sampled by C34 and show that these attenuate the affinity for cognate peptide. Subsequently, the observed motion is exploited to develop an allosterically regulated peptide binder whose binding affinity can be controlled through the addition of a second molecule. Our study emphasizes the unique role that NMR can play in directing the design process and in the construction of new molecules with more complex functionality.
Collapse
Affiliation(s)
- Enrico Rennella
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
| | - Danny D. Sahtoe
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | - Lewis E. Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ONM5G 0A4, Canada
| |
Collapse
|
5
|
Bolik-Coulon N, Hansen DF, Kay LE. Optimizing frequency sampling in CEST experiments. JOURNAL OF BIOMOLECULAR NMR 2022; 76:167-183. [PMID: 36192571 DOI: 10.1007/s10858-022-00403-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
For the past decade chemical exchange saturation transfer (CEST) experiments have been successfully applied to study exchange processes in biomolecules involving sparsely populated, transiently formed conformers. Initial implementations focused on extensive sampling of the CEST frequency domain, requiring significant measurement times. Here we show that the lengthy sampling schemes often used are not optimal and that reduced frequency sampling schedules can be developed without a priori knowledge of the exchange parameters, that only depend on the chosen B1 field, and, to a lesser extent, on the intrinsic transverse relaxation rates of ground state spins. The reduced sampling approach described here can be used synergistically with other methods for reducing measurement times such as those that excite multiple frequencies in the CEST dimension simultaneously, or make use of non-uniform sampling of indirectly detected time domains, to further decrease measurement times. The proposed approach is validated by analysis of simulated and experimental datasets.
Collapse
Affiliation(s)
- Nicolas Bolik-Coulon
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
6
|
Cabrera Allpas R, Hansen AL, Brüschweiler R. NOAH-( 15N/ 13C)-CEST NMR supersequence for dynamics studies of biomolecules. Chem Commun (Camb) 2022; 58:9258-9261. [PMID: 35903936 DOI: 10.1039/d2cc02015g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An NMR supersequence is introduced for the rapid acquisition of 15N-CEST and methyl-13C-CEST experiments in the same pulse sequence for applications to proteins. The high sensitivity and accuracy allows the simultaneous quantitative characterization of backbone and side-chain dynamics on the millisecond timescale ideal for routine screening for alternative protein states.
Collapse
Affiliation(s)
- Rodrigo Cabrera Allpas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA. .,Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
7
|
Agarwal PK, Bernard DN, Bafna K, Doucet N. Enzyme dynamics: Looking beyond a single structure. ChemCatChem 2020; 12:4704-4720. [PMID: 33897908 PMCID: PMC8064270 DOI: 10.1002/cctc.202000665] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/23/2022]
Abstract
Conventional understanding of how enzymes function strongly emphasizes the role of structure. However, increasing evidence clearly indicates that enzymes do not remain fixed or operate exclusively in or close to their native structure. Different parts of the enzyme (from individual residues to full domains) undergo concerted motions on a wide range of time-scales, including that of the catalyzed reaction. Information obtained on these internal motions and conformational fluctuations has so far uncovered and explained many aspects of enzyme mechanisms, which could not have been understood from a single structure alone. Although there is wide interest in understanding enzyme dynamics and its role in catalysis, several challenges remain. In addition to technical difficulties, the vast majority of investigations are performed in dilute aqueous solutions, where conditions are significantly different than the cellular milieu where a large number of enzymes operate. In this review, we discuss recent developments, several challenges as well as opportunities related to this topic. The benefits of considering dynamics as an integral part of the enzyme function can also enable new means of biocatalysis, engineering enzymes for industrial and medicinal applications.
Collapse
Affiliation(s)
- Pratul K. Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, Oklahoma 74078
- Arium BioLabs, 2519 Caspian Drive, Knoxville, Tennessee 37932
| | - David N. Bernard
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, Quebec, H7V 1B7, Canada
| | - Khushboo Bafna
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, Quebec, H7V 1B7, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Structure, and Engineering, 1045 Avenue de la Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
8
|
Tiwari VP, Vallurupalli P. A CEST NMR experiment to obtain glycine 1H α chemical shifts in 'invisible' minor states of proteins. JOURNAL OF BIOMOLECULAR NMR 2020; 74:443-455. [PMID: 32696193 DOI: 10.1007/s10858-020-00336-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Chemical exchange saturation transfer (CEST) experiments are routinely used to study protein conformational exchange between a 'visible' major state and 'invisible' minor states because they can detect minor states with lifetimes varying from ~ 3 to ~ 100 ms populated to just ~ 0.5%. Consequently several 1H, 15N and 13C CEST experiments have been developed to study exchange and obtain minor state chemical shifts at almost all backbone and sidechain sites in proteins. Conspicuously missing from this extensive set of CEST experiments is a 1H CEST experiment to study exchange at glycine (Gly) 1Hα sites as the existing 1H CEST experiments that have been designed to study dynamics in amide 1H-15N spin systems and methyl 13CH3 groups with three equivalent protons while suppressing 1H-1H NOE induced dips are not suitable for studying exchange in methylene 13CH2 groups with inequivalent protons. Here a Gly 1Hα CEST experiment to obtain the minor state Gly 1Hα chemical shifts is presented. The utility of this experiment is demonstrated on the L99A cavity mutant of T4 Lysozyme (T4L L99A) that undergoes conformational exchange between two compact conformers. The CEST derived minor state Gly 1Hα chemical shifts of T4L L99A are in agreement with those obtained previously using CPMG techniques. The experimental strategy presented here can also be used to obtain methylene proton minor state chemical shifts from protein sidechain and nucleic acid backbone sites.
Collapse
Affiliation(s)
- Ved Prakash Tiwari
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India.
| |
Collapse
|
9
|
Alderson TR, Kay LE. Unveiling invisible protein states with NMR spectroscopy. Curr Opin Struct Biol 2020; 60:39-49. [DOI: 10.1016/j.sbi.2019.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
|
10
|
Schütz S, Sprangers R. Methyl TROSY spectroscopy: A versatile NMR approach to study challenging biological systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:56-84. [PMID: 32130959 DOI: 10.1016/j.pnmrs.2019.09.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 05/21/2023]
Abstract
A major goal in structural biology is to unravel how molecular machines function in detail. To that end, solution-state NMR spectroscopy is ideally suited as it is able to study biological assemblies in a near natural environment. Based on methyl TROSY methods, it is now possible to record high-quality data on complexes that are far over 100 kDa in molecular weight. In this review, we discuss the theoretical background of methyl TROSY spectroscopy, the information that can be extracted from methyl TROSY spectra and approaches that can be used to assign methyl resonances in large complexes. In addition, we touch upon insights that have been obtained for a number of challenging biological systems, including the 20S proteasome, the RNA exosome, molecular chaperones and G-protein-coupled receptors. We anticipate that methyl TROSY methods will be increasingly important in modern structural biology approaches, where information regarding static structures is complemented with insights into conformational changes and dynamic intermolecular interactions.
Collapse
Affiliation(s)
- Stefan Schütz
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
11
|
Jameson G, Hansen AL, Li D, Bruschweiler-Li L, Brüschweiler R. Extreme Nonuniform Sampling for Protein NMR Dynamics Studies in Minimal Time. J Am Chem Soc 2019; 141:16829-16838. [PMID: 31560199 DOI: 10.1021/jacs.9b08032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
NMR spectroscopy is an extraordinarily rich source of quantitative dynamics of proteins in solution using spin relaxation or chemical exchange saturation transfer (CEST) experiments. However, 15N-CEST measurements require prolonged multidimensional, so-called pseudo-3D HSQC experiments where the pseudo dimension is a radio frequency offset Δω of a weak 15N saturation field. Nonuniform sampling (NUS) approaches have the potential to significantly speed up these measurements, but they also carry the risk of introducing serious artifacts and the systematic optimization of nonuniform sampling schedules has remained elusive. It is demonstrated here how this challenge can be addressed by using fitted cross-peaks of a reference 2D HSQC experiment as footprints, which are subsequently used to reconstruct cross-peak amplitudes of a pseudo-3D data set as a function of Δω by a linear least-squares fit. It is shown for protein Im7 how the approach can yield highly accurate CEST profiles based on an absolutely minimally sampled (AMS) data set allowing a speed-up of a factor 20-30. Spectrum-specific optimized nonuniform sampling (SONUS) schemes based on the Cramer-Rao lower bound metric were critical to achieve such a performance, revealing also more general properties of optimal sampling schedules. This is the first systematic exploration and optimization of NUS schedules for the dramatic speed-up of quantitative multidimensional NMR measurements that minimize unwanted errors.
Collapse
Affiliation(s)
- Gregory Jameson
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States.,Biophysics Graduate Program , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Alexandar L Hansen
- Campus Chemical Instrument Center , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Dawei Li
- Campus Chemical Instrument Center , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States.,Biophysics Graduate Program , The Ohio State University , Columbus , Ohio 43210 , United States.,Campus Chemical Instrument Center , The Ohio State University , Columbus , Ohio 43210 , United States.,Department of Biological Chemistry and Pharmacology , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
12
|
Vallurupalli P, Tiwari VP, Ghosh S. A Double-Resonance CEST Experiment To Study Multistate Protein Conformational Exchange: An Application to Protein Folding. J Phys Chem Lett 2019; 10:3051-3056. [PMID: 31081645 DOI: 10.1021/acs.jpclett.9b00985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite the importance of protein dynamics to function, studying exchange between multiple conformational states remains a challenge because sparsely populated states are invisible to conventional techniques. CEST NMR experiments can detect minor states with lifetimes between 5 and 200 ms populated to a level of just ∼1%. However, CEST often cannot provide the exchange mechanism for processes involving three or more states, leaving the role of the detected minor states unknown. Here a double-resonance CEST experiment to determine the kinetics of multistate exchange is presented. The approach that involves irradiating resonances from two minor states simultaneously is used to study the exchange of T4 lysozyme (T4L) between the dominant native state and two minor states, the unfolded state and a second minor state (B), each populated to only ∼4%. Regular CEST does not provide the folding mechanism, but double-resonance CEST clearly shows that T4L can fold directly without going through B.
Collapse
Affiliation(s)
- Pramodh Vallurupalli
- TIFR Centre for Interdisciplinary Sciences , Tata Institute of Fundamental Research Hyderabad , 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District , Hyderabad , Telangana 500107 , India
| | - Ved Prakash Tiwari
- TIFR Centre for Interdisciplinary Sciences , Tata Institute of Fundamental Research Hyderabad , 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District , Hyderabad , Telangana 500107 , India
| | - Shamasree Ghosh
- TIFR Centre for Interdisciplinary Sciences , Tata Institute of Fundamental Research Hyderabad , 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District , Hyderabad , Telangana 500107 , India
| |
Collapse
|
13
|
Tiwari VP, Pandit S, Vallurupalli P. Exchangeable deuterons introduce artifacts in amide 15N CEST experiments used to study protein conformational exchange. JOURNAL OF BIOMOLECULAR NMR 2019; 73:43-48. [PMID: 30661150 DOI: 10.1007/s10858-018-00223-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Protein molecules sample different conformations in solution and characterizing these conformations is crucial to understanding protein function. 15N CEST experiments are now routinely used to study slow conformational exchange of protein molecules between a 'visible' major state and 'invisible' minor states. These experiments have also been adapted to measure the solvent exchange rates of amide protons by exploiting the one bond deuterium isotope effect on the amide 15N chemical shifts. However at moderately high temperatures (~ 50 °C) that are sometimes required to populate protein minor conformers to levels (~ 1%) that can be detected by CEST experiments solvent H/D exchange can lead to 'dips' in low B115N CEST profiles that can be wrongly assigned to the conformational exchange process being characterized. This is demonstrated in the case of ~ 18 kDa T4 Lysozyme (T4L) at 50 °C and the ~ 11 kDa E. coli hibernation promoting factor (HPF) at 52 °C. This problem is trivially solved by eliminating the exchangeable deuterons in the solvent by using either an external D2O lock or by using a small amount (~ 1-3%) of a molecule like d6-DMSO that does not contain exchangeable deuterons to lock the spectrometer.
Collapse
Affiliation(s)
- Ved Prakash Tiwari
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India
| | - Subhendu Pandit
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India
| | - Pramodh Vallurupalli
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India.
| |
Collapse
|
14
|
Abstract
The phenomenon of chemical or conformational exchange in NMR spectroscopy has enabled detailed characterization of time-dependent aspects of biomolecular function, including folding, molecular recognition, allostery, and catalysis, on timescales from microsecond to second. Importantly, NMR methods based on a variety of spin relaxation parameters have been developed that provide quantitative information on interconversion kinetics, thermodynamic properties, and structural features of molecular states populated to a fraction of a percent at equilibrium and otherwise unobservable by other NMR approaches. The ongoing development of more sophisticated experimental techniques and the necessity to apply these methods to larger and more complex molecular systems engenders a corresponding need for theoretical advances describing such techniques and facilitating data analysis in applications. This review surveys current aspects of the theory of chemical exchange, as utilized in ZZ-exchange; Hahn and Carr-Purcell-Meiboom-Gill (CPMG) spin-echo; and R1ρ, chemical exchange saturation transfer (CEST), and dark state saturation transfer (DEST) spin-locking experiments. The review emphasizes theoretical results for kinetic topologies with more than two interconverting states, both to obtain compact analytical forms suitable for data analysis and to establish conditions for distinguishability between alternative kinetic schemes.
Collapse
Affiliation(s)
- Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.
| | - Hans Koss
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
15
|
Yuwen T, Bah A, Brady JP, Ferrage F, Bouvignies G, Kay LE. Measuring Solvent Hydrogen Exchange Rates by Multifrequency Excitation 15N CEST: Application to Protein Phase Separation. J Phys Chem B 2018; 122:11206-11217. [DOI: 10.1021/acs.jpcb.8b06820] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Alaji Bah
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Lewis E. Kay
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|