1
|
Pujahari SR, Purusottam RN, Mali PS, Sarkar S, Khaneja N, Vajpai N, Kumar A. Exploring the Higher Order Structure and Conformational Transitions in Insulin Microcrystalline Biopharmaceuticals by Proton-Detected Solid-State Nuclear Magnetic Resonance at Natural Abundance. Anal Chem 2024; 96:4756-4763. [PMID: 38326990 DOI: 10.1021/acs.analchem.3c04040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The integrity of a higher order structure (HOS) is an essential requirement to ensure the efficacy, stability, and safety of protein therapeutics. Solution-state nuclear magnetic resonance (NMR) occupies a unique niche as one of the most promising methods to access atomic-level structural information on soluble biopharmaceutical formulations. Another major class of drugs is poorly soluble, such as microcrystalline suspensions, which poses significant challenges for the characterization of the active ingredient in its native state. Here, we have demonstrated a solid-state NMR method for HOS characterization of biopharmaceutical suspensions employing a selective excitation scheme under fast magic angle spinning (MAS). The applicability of the method is shown on commercial insulin suspensions at natural isotopic abundance. Selective excitation aided with proton detection and non-uniform sampling (NUS) provides improved sensitivity and resolution. The enhanced resolution enabled us to demonstrate the first experimental evidence of a phenol-escaping pathway in insulin, leading to conformational transitions to different hexameric states. This approach has the potential to serve as a valuable means for meticulously examining microcrystalline biopharmaceutical suspensions, which was previously not attainable in their native formulation states and can be seamlessly extended to other classes of biopharmaceuticals such as mAbs and other microcrystalline proteins.
Collapse
Affiliation(s)
- Soumya Ranjan Pujahari
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Rudra N Purusottam
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Pramod S Mali
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Sambeda Sarkar
- System and Control Engineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Navin Khaneja
- System and Control Engineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Navratna Vajpai
- Biocon Biologics Limited, Biocon SEZ, Plot No. 2 & 3, Phase IV-B.I.A, Bommasandra-Jigani Link Road, Bangalore 560099, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| |
Collapse
|
2
|
Kriebel CN, Asido M, Kaur J, Orth J, Braun P, Becker-Baldus J, Wachtveitl J, Glaubitz C. Structural and functional consequences of the H180A mutation of the light-driven sodium pump KR2. Biophys J 2023; 122:1003-1017. [PMID: 36528791 PMCID: PMC10111219 DOI: 10.1016/j.bpj.2022.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Krokinobacter eikastus rhodopsin 2 (KR2) is a light-driven pentameric sodium pump. Its ability to translocate cations other than protons and to create an electrochemical potential makes it an attractive optogenetic tool. Tailoring its ion-pumping characteristics by mutations is therefore of great interest. In addition, understanding the functional and structural consequences of certain mutations helps to derive a functional mechanism of ion selectivity and transfer of KR2. Based on solid-state NMR spectroscopy, we report an extensive chemical shift resonance assignment of KR2 within lipid bilayers. This data set was then used to probe site-resolved allosteric effects of sodium binding, which revealed multiple responsive sites including the Schiff base nitrogen and the NDQ motif. Based on this data set, the consequences of the H180A mutation are probed. The mutant is silenced in the presence of sodium while in its absence proton pumping is observed. Our data reveal specific long-range effects along the sodium transfer pathway. These experiments are complemented by time-resolved optical spectroscopy. Our data suggest a model in which sodium uptake by the mutant can still take place, while sodium release and backflow control are disturbed.
Collapse
Affiliation(s)
- Clara Nassrin Kriebel
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marvin Asido
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jagdeep Kaur
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jennifer Orth
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Philipp Braun
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Burakova E, Vasa SK, Linser R. Characterization of conformational heterogeneity via higher-dimensionality, proton-detected solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2022; 76:197-212. [PMID: 36149571 PMCID: PMC9712413 DOI: 10.1007/s10858-022-00405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Site-specific heterogeneity of solid protein samples can be exploited as valuable information to answer biological questions ranging from thermodynamic properties determining fibril formation to protein folding and conformational stability upon stress. In particular, for proteins of increasing molecular weight, however, site-resolved assessment without residue-specific labeling is challenging using established methodology, which tends to rely on carbon-detected 2D correlations. Here we develop purely chemical-shift-based approaches for assessment of relative conformational heterogeneity that allows identification of each residue via four chemical-shift dimensions. High dimensionality diminishes the probability of peak overlap in the presence of multiple, heterogeneously broadened resonances. Utilizing backbone dihedral-angle reconstruction from individual contributions to the peak shape either via suitably adapted prediction routines or direct association with a relational database, the methods may in future studies afford assessment of site-specific heterogeneity of proteins without site-specific labeling.
Collapse
Affiliation(s)
- Ekaterina Burakova
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Suresh K Vasa
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
4
|
Yang M, Liu Z, Zhang J, Zhu X, Xie W, Lan H, Huang Y, Ye X, Yang J. Simultaneous quantification of cellulose and pectin in tobacco using a robust solid-state NMR method. Carbohydr Res 2022; 521:108676. [PMID: 36126413 DOI: 10.1016/j.carres.2022.108676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Cellulose and pectin are the important components of tobacco (Nicotiana tabacum L.) cell wall, which affect the formation of undesirable compounds. Their contents are closely related to the harmfulness of tobacco. But the simultaneous quantitative analysis of cellulose and pectin is hard to be achieved for traditional analytical methods. A solid-state 13C cross-polarization by multiple contact periods (multiCP) NMR method was developed for the simultaneous quantification of cellulose and pectin in tobacco. The multiCP spectrum at optimal parameters agreed well with the direct polarization (DP) spectrum within one-thirtieth of the measurement time and provided satisfactory signal to noise ratio (SNR). After three simple procedures of sample preparation and spectra deconvolution, simultaneous quantification of cellulose and pectin extracted from tobacco was effectively achieved. Compared with the chemical method, this interesting method was rapid, practicable, and very promising, which provided the technical support for the simultaneous quantification of cell wall substances in biological sample.
Collapse
Affiliation(s)
- Mingyu Yang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, People's Republic of China
| | - Zechun Liu
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., 298 Binshui Road, Xiamen, 361001, People's Republic of China.
| | - Jianping Zhang
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., 298 Binshui Road, Xiamen, 361001, People's Republic of China
| | - Xiaolan Zhu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, People's Republic of China
| | - Wei Xie
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., 298 Binshui Road, Xiamen, 361001, People's Republic of China
| | - Hongqiao Lan
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., 298 Binshui Road, Xiamen, 361001, People's Republic of China
| | - Yanjun Huang
- Technology Center, China Tobacco Fujian Industrial Co. Ltd., 298 Binshui Road, Xiamen, 361001, People's Republic of China
| | - Xin Ye
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, People's Republic of China
| | - Jun Yang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, People's Republic of China.
| |
Collapse
|
5
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
6
|
Dudley JA, Park S, MacDonald ME, Fetene E, Smith CA. Resolving overlapped signals with automated FitNMR analytical peak modeling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 318:106773. [PMID: 32759043 DOI: 10.1016/j.jmr.2020.106773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Nuclear magnetic resonance (NMR) is a valuable tool for determining the structures of molecules and probing their dynamics. A longstanding problem facing both small-molecule and macromolecular NMR is overlapped signals in crowded spectra. To address this, we have developed a method that extracts peak features by fitting analytically derived models of NMR lineshapes. The approach takes into account the effects of truncation, apodization, and the resulting artifacts, while avoiding systematic errors that have affected other models. Even severely overlapped peaks, beyond the point of coalescence, can be distinguished in both simulated and experimental data. We show that the method can measure unresolved backbone scalar couplings directly from a 2D proton-nitrogen spectrum of a de novo designed mini protein. The algorithm is implemented in the FitNMR open-source R package and can be used to analyze nearly any type of single or multidimensional data from small molecules or biomolecules.
Collapse
Affiliation(s)
- Joshua A Dudley
- Department of Chemistry, Wesleyan University, 52 Lawn Avenue, Middleton, CT 06459, USA
| | - Sojeong Park
- Department of Chemistry, Wesleyan University, 52 Lawn Avenue, Middleton, CT 06459, USA
| | - Meagan E MacDonald
- Department of Chemistry, Wesleyan University, 52 Lawn Avenue, Middleton, CT 06459, USA
| | - Emanual Fetene
- Department of Chemistry, Wesleyan University, 52 Lawn Avenue, Middleton, CT 06459, USA
| | - Colin A Smith
- Department of Chemistry, Wesleyan University, 52 Lawn Avenue, Middleton, CT 06459, USA.
| |
Collapse
|