1
|
Cucuzza S, Sitnik M, Jurt S, Michel E, Dai W, Müntener T, Ernst P, Häussinger D, Plückthun A, Zerbe O. Unexpected dynamics in femtomolar complexes of binding proteins with peptides. Nat Commun 2023; 14:7823. [PMID: 38016954 PMCID: PMC10684580 DOI: 10.1038/s41467-023-43596-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
Ultra-tight binding is usually observed for proteins associating with rigidified molecules. Previously, we demonstrated that femtomolar binders derived from the Armadillo repeat proteins (ArmRPs) can be designed to interact very tightly with fully flexible peptides. Here we show for ArmRPs with four and seven sequence-identical internal repeats that the peptide-ArmRP complexes display conformational dynamics. These dynamics stem from transient breakages of individual protein-residue contacts that are unrelated to overall unbinding. The labile contacts involve electrostatic interactions. We speculate that these dynamics allow attaining very high binding affinities, since they reduce entropic losses. Importantly, only NMR techniques can pick up these local events by directly detecting conformational exchange processes without complications from changes in solvent entropy. Furthermore, we demonstrate that the interaction surface of the repeat protein regularizes upon peptide binding to become more compatible with the peptide geometry. These results provide novel design principles for ultra-tight binders.
Collapse
Affiliation(s)
- Stefano Cucuzza
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Malgorzata Sitnik
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Simon Jurt
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Erich Michel
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
- Department of Biochemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Wenzhao Dai
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Thomas Müntener
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Patrick Ernst
- Department of Biochemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland.
| | - Oliver Zerbe
- Department of Chemistry, University of Zürich, Winterthurerstrasse, 190, 8057, Zürich, Switzerland.
| |
Collapse
|
2
|
Michel E, Cucuzza S, Mittl PRE, Zerbe O, Plückthun A. Improved Repeat Protein Stability by Combined Consensus and Computational Protein Design. Biochemistry 2023; 62:318-329. [PMID: 35657362 DOI: 10.1021/acs.biochem.2c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
High protein stability is an important feature for proteins used as therapeutics, as diagnostics, and in basic research. We have previously employed consensus design to engineer optimized Armadillo repeat proteins (ArmRPs) for sequence-specific recognition of linear epitopes with a modular binding mode. These designed ArmRPs (dArmRPs) feature high stability and are composed of M-type internal repeats that are flanked by N- and C-terminal capping repeats that protect the hydrophobic core from solvent exposure. While the overall stability of the designed ArmRPs is remarkably high, subsequent biochemical and biophysical experiments revealed that the N-capping repeat assumes a partially unfolded, solvent-accessible conformation for a small fraction of time that renders it vulnerable to proteolysis and aggregation. To overcome this problem, we have designed new N-caps starting from an M-type internal repeat using the Rosetta software. The superior stability of the computationally refined models was experimentally verified by circular dichroism and nuclear magnetic resonance spectroscopy. A crystal structure of a dArmRP containing the novel N-cap revealed that the enhanced stability correlates with an improved packing of this N-cap onto the hydrophobic core of the dArmRP. Hydrogen exchange experiments further show that the level of local unfolding of the N-cap is reduced by several orders of magnitude, resulting in increased resistance to proteolysis and weakened aggregation. As a first application of the novel N-cap, we determined the solution structure of a dArmRP with four internal repeats, which was previously impeded by the instability of the original N-cap.
Collapse
Affiliation(s)
- Erich Michel
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Stefano Cucuzza
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peer R E Mittl
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
3
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
4
|
Orton H, Abdelkader E, Topping L, Butler S, Otting G. Localising nuclear spins by pseudocontact shifts from a single tagging site. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:65-76. [PMID: 37905181 PMCID: PMC10539793 DOI: 10.5194/mr-3-65-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/18/2022] [Indexed: 11/01/2023]
Abstract
Ligating a protein at a specific site with a tag molecule containing a paramagnetic metal ion provides a versatile way of generating pseudocontact shifts (PCSs) in nuclear magnetic resonance (NMR) spectra. PCSs can be observed for nuclear spins far from the tagging site, and PCSs generated from multiple tagging sites have been shown to enable highly accurate structure determinations at specific sites of interest, even when using flexible tags, provided the fitted effective magnetic susceptibility anisotropy (Δ χ ) tensors accurately back-calculate the experimental PCSs measured in the immediate vicinity of the site of interest. The present work investigates the situation where only the local structure of a protein region or bound ligand is to be determined rather than the structure of the entire molecular system. In this case, the need for gathering structural information from tags deployed at multiple sites may be queried. Our study presents a computational simulation of the structural information available from samples produced with single tags attached at up to six different sites, up to six different tags attached to a single site, and in-between scenarios. The results indicate that the number of tags is more important than the number of tagging sites. This has important practical implications, as it is much easier to identify a single site that is suitable for tagging than multiple ones. In an initial experimental demonstration with the ubiquitin mutant S57C, PCSs generated with four different tags at a single site are shown to accurately pinpoint the location of amide protons in different segments of the protein.
Collapse
Affiliation(s)
- Henry W. Orton
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Elwy H. Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Lydia Topping
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, United Kingdom
| | - Stephen J. Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, United Kingdom
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|