1
|
Tia ST, Luo M, Fan W. Mapping the Role of P-gp in Multidrug Resistance: Insights from Recent Structural Studies. Int J Mol Sci 2025; 26:4179. [PMID: 40362415 PMCID: PMC12072085 DOI: 10.3390/ijms26094179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
P-glycoprotein (P-gp/ABCB1), a key ATP-binding cassette (ABC) transporter, plays a central role in multidrug resistance (MDR), one of the leading causes of chemotherapy failure in cancer treatment. P-gp actively pumps chemotherapeutic agents out of cancer cells, reducing intracellular drug concentration and compromising therapeutic efficacy. Recent advancements in structural biology, particularly cryogenic electron microscopy (cryo-EM), have revealed detailed conformational states of P-gp, providing unprecedented insights into its transport mechanisms. In parallel, studies have identified various P-gp mutants in cancer patients, many of which are linked to altered drug efflux activity and resistance phenotypes. This review systematically examines recent structural studies of P-gp, correlates known patient-derived mutations to their functional consequences, and explores their impact on MDR. We propose plausible mechanisms by which these mutations affect P-gp's activity based on structural evidence and discuss their implications for chemotherapy resistance. Additionally, we review current approaches for P-gp inhibition, a critical strategy to restore drug sensitivity in resistant cancers, and outline future research directions to combat P-gp-mediated MDR.
Collapse
MESH Headings
- Humans
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Mutation
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Protein Conformation
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/chemistry
- ATP Binding Cassette Transporter, Subfamily B/metabolism
Collapse
Affiliation(s)
- Shi Ting Tia
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore;
| | - Min Luo
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore;
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wenjie Fan
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore;
| |
Collapse
|
2
|
Tang Q, Sinclair M, Hasdemir HS, Stein RA, Karakas E, Tajkhorshid E, Mchaourab HS. Asymmetric conformations and lipid interactions shape the ATP-coupled cycle of a heterodimeric ABC transporter. Nat Commun 2023; 14:7184. [PMID: 37938578 PMCID: PMC10632425 DOI: 10.1038/s41467-023-42937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Here we used cryo-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy (DEER), and molecular dynamics (MD) simulations, to capture and characterize ATP- and substrate-bound inward-facing (IF) and occluded (OC) conformational states of the heterodimeric ATP binding cassette (ABC) multidrug exporter BmrCD in lipid nanodiscs. Supported by DEER analysis, the structures reveal that ATP-powered isomerization entails changes in the relative symmetry of the BmrC and BmrD subunits that propagates from the transmembrane domain to the nucleotide binding domain. The structures uncover asymmetric substrate and Mg2+ binding which we hypothesize are required for triggering ATP hydrolysis preferentially in one of the nucleotide-binding sites. MD simulations demonstrate that multiple lipid molecules differentially bind the IF versus the OC conformation thus establishing that lipid interactions modulate BmrCD energy landscape. Our findings are framed in a model that highlights the role of asymmetric conformations in the ATP-coupled transport with general implications to the mechanism of ABC transporters.
Collapse
Affiliation(s)
- Qingyu Tang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Matt Sinclair
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hale S Hasdemir
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Erkan Karakas
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Tang Q, Sinclair M, Hasdemir HS, Stein R, Karakas E, Tajkhorshid E, Mchaourab H. Asymmetric conformations and lipid interactions shape the ATP-coupled cycle of a heterodimeric ABC transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.541986. [PMID: 37398337 PMCID: PMC10312460 DOI: 10.1101/2023.05.29.541986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
To illuminate the structural origin of catalytic asymmetry of heterodimeric ABC transporters and how it shapes the energetics of their conformational cycles, we used cryo-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy (DEER), and molecular dynamics (MD) simulations, to capture and characterize conformational states of the heterodimeric ABC multidrug exporter BmrCD in lipid nanodiscs. In addition to multiple ATP- and substrate-bound inward-facing (IF) conformations, we obtained the structure of an occluded (OC) conformation wherein the unique extracellular domain (ECD) twists to partially open the extracellular gate. In conjunction with DEER analysis of the populations of these conformations, the structures reveal that ATP-powered isomerization entails changes in the relative symmetry of the BmrC and BmrD subunits that propagates from the transmembrane domain (TMD) to the nucleotide binding domain (NBD). The structures uncover asymmetric substrate and Mg 2+ binding which we hypothesize are required for triggering ATP hydrolysis preferentially in one of the nucleotide-binding sites. MD simulations demonstrated that multiple lipid molecules, identified from the cryo-EM density maps, differentially bind the IF versus the OC conformation thus modulating their relative stability. In addition to establishing how lipid interactions with BmrCD modulate the energy landscape, our findings are framed in a distinct transport model that highlights the role of asymmetric conformations in the ATP-coupled cycle with implications to the mechanism of ABC transporters in general.
Collapse
|
4
|
Lacabanne D, Wiegand T, Di Cesare M, Orelle C, Ernst M, Jault JM, Meier BH, Böckmann A. Solid-State NMR Reveals Asymmetric ATP Hydrolysis in the Multidrug ABC Transporter BmrA. J Am Chem Soc 2022; 144:12431-12442. [PMID: 35776907 PMCID: PMC9284561 DOI: 10.1021/jacs.2c04287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The detailed mechanism
of ATP hydrolysis in ATP-binding cassette
(ABC) transporters is still not fully understood. Here, we employed 31P solid-state NMR to probe the conformational changes and
dynamics during the catalytic cycle by locking the multidrug ABC transporter
BmrA in prehydrolytic, transition, and posthydrolytic states, using
a combination of mutants and ATP analogues. The 31P spectra
reveal that ATP binds strongly in the prehydrolytic state to both
ATP-binding sites as inferred from the analysis of the nonhydrolytic
E504A mutant. In the transition state of wild-type BmrA, the symmetry
of the dimer is broken and only a single site is tightly bound to
ADP:Mg2+:vanadate, while the second site is more ‘open’
allowing exchange with the nucleotides in the solvent. In the posthydrolytic
state, weak binding, as characterized by chemical exchange with free
ADP and by asymmetric 31P–31P two-dimensional
(2D) correlation spectra, is observed for both sites. Revisiting the 13C spectra in light of these findings confirms the conformational
nonequivalence of the two nucleotide-binding sites in the transition
state. Our results show that following ATP binding, the symmetry of
the ATP-binding sites of BmrA is lost in the ATP-hydrolysis step,
but is then recovered in the posthydrolytic ADP-bound state.
Collapse
Affiliation(s)
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Margot Di Cesare
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS/University of Lyon, 7, passage du Vercors, 69367 Lyon, France
| | - Cédric Orelle
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS/University of Lyon, 7, passage du Vercors, 69367 Lyon, France
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Michel Jault
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS/University of Lyon, 7, passage du Vercors, 69367 Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS/University of Lyon, 7, passage du Vercors, 69367 Lyon, France
| |
Collapse
|
5
|
ATP Analogues for Structural Investigations: Case Studies of a DnaB Helicase and an ABC Transporter. Molecules 2020; 25:molecules25225268. [PMID: 33198135 PMCID: PMC7698047 DOI: 10.3390/molecules25225268] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
Nucleoside triphosphates (NTPs) are used as chemical energy source in a variety of cell systems. Structural snapshots along the NTP hydrolysis reaction coordinate are typically obtained by adding stable, nonhydrolyzable adenosine triphosphate (ATP) -analogues to the proteins, with the goal to arrest a state that mimics as closely as possible a physiologically relevant state, e.g., the pre-hydrolytic, transition and post-hydrolytic states. We here present the lessons learned on two distinct ATPases on the best use and unexpected pitfalls observed for different analogues. The proteins investigated are the bacterial DnaB helicase from Helicobacter pylori and the multidrug ATP binding cassette (ABC) transporter BmrA from Bacillus subtilis, both belonging to the same division of P-loop fold NTPases. We review the magnetic-resonance strategies which can be of use to probe the binding of the ATP-mimics, and present carbon-13, phosphorus-31, and vanadium-51 solid-state nuclear magnetic resonance (NMR) spectra of the proteins or the bound molecules to unravel conformational and dynamic changes upon binding of the ATP-mimics. Electron paramagnetic resonance (EPR), and in particular W-band electron-electron double resonance (ELDOR)-detected NMR, is of complementary use to assess binding of vanadate. We discuss which analogues best mimic the different hydrolysis states for the DnaB helicase and the ABC transporter BmrA. These might be relevant also to structural and functional studies of other NTPases.
Collapse
|
6
|
Dastvan R, Mishra S, Peskova YB, Nakamoto RK, Mchaourab HS. Mechanism of allosteric modulation of P-glycoprotein by transport substrates and inhibitors. Science 2019; 364:689-692. [PMID: 31097669 DOI: 10.1126/science.aav9406] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/17/2019] [Indexed: 01/15/2023]
Abstract
The ATP-binding cassette subfamily B member 1 (ABCB1) multidrug transporter P-glycoprotein plays a central role in clearance of xenobiotics in humans and is implicated in cancer resistance to chemotherapy. We used double electron electron resonance spectroscopy to uncover the basis of stimulation of P-glycoprotein adenosine 5'-triphosphate (ATP) hydrolysis by multiple substrates and illuminate how substrates and inhibitors differentially affect its transport function. Our results reveal that substrate-induced acceleration of ATP hydrolysis correlates with stabilization of a high-energy, post-ATP hydrolysis state characterized by structurally asymmetric nucleotide-binding sites. By contrast, this state is destabilized in the substrate-free cycle and by high-affinity inhibitors in favor of structurally symmetric nucleotide binding sites. Together with previous data, our findings lead to a general model of substrate and inhibitor coupling to P-glycoprotein.
Collapse
Affiliation(s)
- Reza Dastvan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Yelena B Peskova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Robert K Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
7
|
Praest P, Liaci AM, Förster F, Wiertz EJ. New insights into the structure of the MHC class I peptide-loading complex and mechanisms of TAP inhibition by viral immune evasion proteins. Mol Immunol 2019; 113:103-114. [DOI: 10.1016/j.molimm.2018.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
|
8
|
Neuberger A, Du D, Luisi BF. Structure and mechanism of bacterial tripartite efflux pumps. Res Microbiol 2018; 169:401-413. [PMID: 29787834 DOI: 10.1016/j.resmic.2018.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/20/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Abstract
Efflux pumps are membrane proteins which contribute to multi-drug resistance. In Gram-negative bacteria, some of these pumps form complex tripartite assemblies in association with an outer membrane channel and a periplasmic membrane fusion protein. These tripartite machineries span both membranes and the periplasmic space, and they extrude from the bacterium chemically diverse toxic substrates. In this chapter, we summarise current understanding of the structural architecture, functionality, and regulation of tripartite multi-drug efflux assemblies.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
9
|
Szöllősi D, Szakács G, Chiba P, Stockner T. Dissecting the Forces that Dominate Dimerization of the Nucleotide Binding Domains of ABCB1. Biophys J 2018; 114:331-342. [PMID: 29401431 PMCID: PMC5984967 DOI: 10.1016/j.bpj.2017.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/11/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023] Open
Abstract
P-glycoprotein, also known as multidrug resistance protein 1 or ABCB1, can export a wide range of chemically unrelated compounds, including chemotherapeutic drugs. ABCB1 consists of two transmembrane domains that form the substrate binding and translocation domain, and of two cytoplasmic nucleotide binding domains (NBDs) that energize substrate transport by ATP binding and hydrolysis. ATP binding triggers dimerization of the NBDs, which switches the transporter from an inward facing to an outward facing transmembrane domain conformation. We performed MD simulations to study the dynamic behavior of the NBD dimer in the presence or absence of nucleotides. In the apo configuration, the NBDs were overall attractive to each other as shown in the potential of mean force profile, but the energy well was shallow and broad. In contrast, a sharp and deep energy minimum (∼-42 kJ/mol) was found in the presence of ATP, leading to a well-defined conformation. Motif interaction network analyses revealed that ATP stabilizes the NBD dimer by serving as the central hub for interdomain connections. Simulations showed that forces promoting dimerization are multilayered, dominated by electrostatic interactions between the nucleotide and conserved amino acids of the signature sequence and the Walker A motif. In addition, direct and water-bridged hydrogen bonds between NBDs provided conformation-defining interactions. Importantly, we characterized a largely unrecognized but essential contribution from hydrophobic interactions between the adenine moiety of the nucleotides and a hydrophobic surface of the X-loop to the stabilization of the nucleotide-bound NBD dimer. These hydrophobic interactions lead to a sharp energy minimum, thereby conformationally restricting the nucleotide-bound state.
Collapse
Affiliation(s)
- Dániel Szöllősi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gergely Szakács
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Pan X, Zhang Q, Qu S, Huang S, Wang H, Mei H. Allosteric effects of ATP binding on the nucleotide-binding domain of a heterodimeric ATP-binding cassette transporter. Integr Biol (Camb) 2017; 8:1158-1169. [PMID: 27731447 DOI: 10.1039/c6ib00136j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ATP-binding cassette (ABC) exporters mediate vital transport of a variety of molecules across the lipid bilayer in all organisms. To explore the allosteric effect of ATP binding at the asymmetric ATPase sites, molecular dynamics simulations were performed on the nucleotide-binding domains (NBDs) of a heterodimeric exporter TM287/288 in 4 different ATP-bound states. The results showed that ATP bound at the degenerate site can maintain a semi-open conformation of NBD1-NBD2, which may be defective in ATP hydrolysis. By contrast, when bound at the consensus site, ATP can induce an intra-domain rotation of the α-helical subdomain towards the RecA-like subdomain of NBD2 at the degenerate site. The rotation of the α-helical subdomain rearranged the hydrogen bond networks at the NBD1-NBD2 interface, induced a significant conformational change in the D-loop at the degenerate site and inter- and intra-domain communications at both sites, and eventually elicited dimerization of NBD1-NBD2. These findings indicate that the asymmetric ATPase sites of the heterodimeric exporter are structurally and functionally distinct.
Collapse
Affiliation(s)
- Xianchao Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China. and College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qiaoxia Zhang
- Chongqing Research Institute of Chemical Industry, Chongqing 400021, China
| | - Sujun Qu
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shuheng Huang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Huicong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China. and College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China. and College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Szöllősi D, Rose-Sperling D, Hellmich UA, Stockner T. Comparison of mechanistic transport cycle models of ABC exporters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:818-832. [PMID: 29097275 PMCID: PMC7610611 DOI: 10.1016/j.bbamem.2017.10.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022]
Abstract
ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. “This article is part of a Special Issue entitled: Beyond the Structure Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.”
Collapse
Affiliation(s)
- Dániel Szöllősi
- Medical University of Vienna, Institute of Pharmacology, Waehringerstr. 13A, Vienna 1090, Austria
| | - Dania Rose-Sperling
- Johannes Gutenberg-University, Department of Pharmacy and Biochemistry, Johann-Joachim-Becher-Weg 30, Mainz 55128, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max von Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Ute A Hellmich
- Johannes Gutenberg-University, Department of Pharmacy and Biochemistry, Johann-Joachim-Becher-Weg 30, Mainz 55128, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max von Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Thomas Stockner
- Medical University of Vienna, Institute of Pharmacology, Waehringerstr. 13A, Vienna 1090, Austria.
| |
Collapse
|
12
|
Collauto A, Mishra S, Litvinov A, Mchaourab HS, Goldfarb D. Direct Spectroscopic Detection of ATP Turnover Reveals Mechanistic Divergence of ABC Exporters. Structure 2017; 25:1264-1274.e3. [PMID: 28712805 DOI: 10.1016/j.str.2017.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/05/2017] [Accepted: 06/15/2017] [Indexed: 12/27/2022]
Abstract
We have applied high-field (W-band) pulse electron-nuclear double resonance (ENDOR) and electron-electron double resonance (ELDOR)-detected nuclear magnetic resonance (EDNMR) to characterize the coordination sphere of the Mn2+ co-factor in the nucleotide binding sites (NBSs) of ABC transporters. MsbA and BmrCD are two efflux transporters hypothesized to represent divergent catalytic mechanisms. Our results reveal distinct coordination of Mn2+ to ATP and transporter residues in the consensus and degenerate NBSs of BmrCD. In contrast, the coordination of Mn2+ at the two NBSs of MsbA is similar, which provides a mechanistic rationale for its higher rate constant of ATP hydrolysis relative to BmrCD. Direct detection of vanadate ion, trapped in a high-energy post-hydrolysis intermediate, further supports the notion of asymmetric hydrolysis by the two NBSs of BmrCD. The integrated spectroscopic approach presented here, which link energy input to conformational dynamics, can be applied to a variety of systems powered by ATP turnover.
Collapse
Affiliation(s)
- Alberto Collauto
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Aleksei Litvinov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
D-helix influences dimerization of the ATP-binding cassette (ABC) transporter associated with antigen processing 1 (TAP1) nucleotide-binding domain. PLoS One 2017; 12:e0178238. [PMID: 28542489 PMCID: PMC5441636 DOI: 10.1371/journal.pone.0178238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
ATP-binding cassette (ABC) transporters form a large family of transmembrane importers and exporters. Using two nucleotide-binding domains (NBDs), which form a canonical ATP-sandwich dimer at some point within the transport cycle, the transporters harness the energy from ATP binding and hydrolysis to drive substrate transport. However the structural elements that enable and tune the dimerization propensity of the NBDs have not been fully elucidated. Here we compared the biochemical properties of the NBDs of human and rat TAP1, a subunit of the heterodimeric transporter associated with antigen processing (TAP). The isolated human TAP1 NBD was monomeric in solution, in contrast to the previously observed ATP-mediated homodimerization of the isolated rat TAP1 NBD. Using a series of human-rat chimeric constructs, we identified the D-helix, an α-helix N-terminal to the conserved D-loop motif, as an important determinant of NBD dimerization. The ATPase activity of our panel of TAP1 NBD constructs largely correlated with dimerization ability, indicating that the observed dimerization uses the canonical ATP-sandwich interface. The N-terminus of the D-helix from one protomer interacts with the ATP-binding Walker A motif of the second protomer at the ATP-sandwich interface. However, our mutational analysis indicated that residues farther from the interface, within the second and third turn of the D-helix, also influence dimerization. Overall, our data suggest that although the D-helix sequence is not conserved in ABC transporters, its precise positioning within the NBD structure has a critical role in NBD dimerization.
Collapse
|
14
|
Verhalen B, Dastvan R, Thangapandian S, Peskova Y, Koteiche HA, Nakamoto RK, Tajkhorshid E, Mchaourab HS. Energy transduction and alternating access of the mammalian ABC transporter P-glycoprotein. Nature 2017; 543:738-741. [PMID: 28289287 PMCID: PMC5558441 DOI: 10.1038/nature21414] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022]
Abstract
ATP binding cassette (ABC) transporters of the exporter class harness the energy of ATP hydrolysis in the nucleotide-binding domains (NBDs) to power the energetically uphill efflux of substrates by a dedicated transmembrane domain (TMD). Although numerous investigations have described the mechanism of ATP hydrolysis and defined the architecture of ABC exporters, a detailed structural dynamic understanding of the transduction of ATP energy to the work of substrate translocation remains elusive. Here we used double electron-electron resonance and molecular dynamics simulations to describe the ATP- and substrate-coupled conformational cycle of the mouse ABC efflux transporter P-glycoprotein (Pgp; also known as ABCB1), which has a central role in the clearance of xenobiotics and in cancer resistance to chemotherapy. Pairs of spin labels were introduced at residues selected to track the putative inward-facing to outward-facing transition. Our findings illuminate how ATP energy is harnessed in the NBDs in a two-stroke cycle and elucidate the consequent conformational motion that reconfigures the TMD, two critical aspects of Pgp transport mechanism. Along with a fully atomistic model of the outward-facing conformation in membranes, the insight into Pgp conformational dynamics harmonizes mechanistic and structural data into a novel perspective on ATP-coupled transport and reveals mechanistic divergence within the efflux class of ABC transporters.
Collapse
Affiliation(s)
- Brandy Verhalen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Reza Dastvan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Sundarapandian Thangapandian
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yelena Peskova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Hanane A Koteiche
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Robert K Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| |
Collapse
|
15
|
Chaves LAP, Gadsby DC. Cysteine accessibility probes timing and extent of NBD separation along the dimer interface in gating CFTR channels. ACTA ACUST UNITED AC 2015; 145:261-83. [PMID: 25825169 PMCID: PMC4380215 DOI: 10.1085/jgp.201411347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) channel opening and closing are driven by cycles of adenosine triphosphate (ATP) binding-induced formation and hydrolysis-triggered disruption of a heterodimer of its cytoplasmic nucleotide-binding domains (NBDs). Although both composite sites enclosed within the heterodimer interface contain ATP in an open CFTR channel, ATP hydrolysis in the sole catalytically competent site causes channel closure. Opening of the NBD interface at that site then allows ADP-ATP exchange. But how frequently, and how far, the NBD surfaces separate at the other, inactive composite site remains unclear. We assessed separation at each composite site by monitoring access of nucleotide-sized hydrophilic, thiol-specific methanothiosulfonate (MTS) reagents to interfacial target cysteines introduced into either LSGGQ-like ATP-binding cassette signature sequence (replacing equivalent conserved serines: S549 and S1347). Covalent MTS-dependent modification of either cysteine while channels were kept closed by the absence of ATP impaired subsequent opening upon ATP readdition. Modification while channels were opening and closing in the presence of ATP caused macroscopic CFTR current to decline at the same speed as when the unmodified channels shut upon sudden ATP withdrawal. These results suggest that the target cysteines can be modified only in closed channels; that after modification the attached MTS adduct interferes with ATP-mediated opening; and that modification in the presence of ATP occurs rapidly once channels close, before they can reopen. This interpretation was corroborated by the finding that, for either cysteine target, the addition of the hydrolysis-impairing mutation K1250R (catalytic site Walker A Lys) similarly slowed, by an order of magnitude, channel closing on ATP removal and the speed of modification by MTS reagent in ATP. We conclude that, in every CFTR channel gating cycle, the NBD dimer interface separates simultaneously at both composite sites sufficiently to allow MTS reagents to access both signature-sequence serines. Relatively rapid modification of S1347C channels by larger reagents-MTS-glucose, MTS-biotin, and MTS-rhodamine-demonstrates that, at the noncatalytic composite site, this separation must exceed 8 Å.
Collapse
Affiliation(s)
- Luiz A Poletto Chaves
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10065
| | - David C Gadsby
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
16
|
Kinetic validation of the models for P-glycoprotein ATP hydrolysis and vanadate-induced trapping. Proposal for additional steps. PLoS One 2014; 9:e98804. [PMID: 24897122 PMCID: PMC4045855 DOI: 10.1371/journal.pone.0098804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/07/2014] [Indexed: 11/20/2022] Open
Abstract
P-Glycoprotein, a member of the ATP-binding cassette (ABC) superfamily, is a multidrug transporter responsible for cellular efflux of hundreds of structurally unrelated compounds, including natural products, many clinically used drugs and anti-cancer agents. Expression of P-glycoprotein has been linked to multidrug resistance in human cancers. ABC transporters are driven by ATP hydrolysis at their two cytoplasmic nucleotide-binding domains, which interact to form a closed ATP-bound sandwich dimer. Intimate knowledge of the catalytic cycle of these proteins is clearly essential for understanding their mechanism of action. P-Glycoprotein has been proposed to hydrolyse ATP by an alternating mechanism, for which there is substantial experimental evidence, including inhibition of catalytic activity by trapping of ortho-vanadate at one nucleotide-binding domain, and the observation of an asymmetric occluded state. Despite many studies of P-glycoprotein ATPase activity over the past 20 years, no comprehensive kinetic analysis has yet been carried out, and some puzzling features of its behaviour remain unexplained. In this work, we have built several progressively more complex kinetic models, and then carried out simulations and detailed analysis, to test the validity of the proposed reaction pathway employed by P-glycoprotein for ATP hydrolysis. To establish kinetic parameters for the catalytic cycle, we made use of the large amount of published data on ATP hydrolysis by hamster P-glycoprotein, both purified and in membrane vesicles. The proposed kinetic scheme(s) include a high affinity priming reaction for binding of the first ATP molecule, and an independent pathway for ADP binding outside the main catalytic cycle. They can reproduce to varying degrees the observed behavior of the protein's ATPase activity and its inhibition by ortho-vanadate. The results provide new insights into the mode of action of P-glycoprotein, and some hypotheses about the nature of the occluded nucleotide-bound state.
Collapse
|
17
|
Mishra S, Verhalen B, Stein RA, Wen PC, Tajkhorshid E, Mchaourab HS. Conformational dynamics of the nucleotide binding domains and the power stroke of a heterodimeric ABC transporter. eLife 2014; 3:e02740. [PMID: 24837547 PMCID: PMC4046567 DOI: 10.7554/elife.02740] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multidrug ATP binding cassette (ABC) exporters are ubiquitous ABC transporters that extrude cytotoxic molecules across cell membranes. Despite recent progress in structure determination of these transporters, the conformational motion that transduces the energy of ATP hydrolysis to the work of substrate translocation remains undefined. Here, we have investigated the conformational cycle of BmrCD, a representative of the heterodimer family of ABC exporters that have an intrinsically impaired nucleotide binding site. We measured distances between pairs of spin labels monitoring the movement of the nucleotide binding (NBD) and transmembrane domains (TMD). The results expose previously unobserved structural intermediates of the NBDs arising from asymmetric configuration of catalytically inequivalent nucleotide binding sites. The two-state transition of the TMD, from an inward- to an outward-facing conformation, is driven exclusively by ATP hydrolysis. These findings provide direct evidence of divergence in the mechanism of ABC exporters.DOI: http://dx.doi.org/10.7554/eLife.02740.001.
Collapse
Affiliation(s)
- Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Brandy Verhalen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Po-Chao Wen
- Department of Biochemistry, College of Medicine, University of Illinois, Urbana, United States Center for Biophysics and Computational Biology, University of Illinois, Urbana, United States The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Unites States
| | - Emad Tajkhorshid
- Department of Biochemistry, College of Medicine, University of Illinois, Urbana, United States Center for Biophysics and Computational Biology, University of Illinois, Urbana, United States The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Unites States
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| |
Collapse
|
18
|
The Maltose ABC Transporter: Where Structure Meets Function. SPRINGER SERIES IN BIOPHYSICS 2014. [DOI: 10.1007/978-3-642-53839-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Abstract
In this article, I reflect on research on two ATPases. The first is F(1)F(0)-ATPase, also known as ATP synthase. It is the terminal enzyme in oxidative phosphorylation and famous as a nanomotor. Early work on mitochondrial enzyme involved purification in large amount, followed by deduction of subunit composition and stoichiometry and determination of molecular sizes of holoenzyme and individual subunits. Later work on Escherichia coli enzyme utilized mutagenesis and optical probes to reveal the molecular mechanism of ATP hydrolysis and detailed facets of catalysis. The second ATPase is P-glycoprotein, which confers multidrug resistance, notably to anticancer drugs, in mammalian cells. Purification of the protein in large quantity allowed detailed characterization of catalysis, formulation of an alternating sites mechanism, and recently, advances in structural characterization.
Collapse
Affiliation(s)
- Alan E Senior
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
20
|
George AM, Jones PM. Perspectives on the structure-function of ABC transporters: the Switch and Constant Contact models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 109:95-107. [PMID: 22765920 DOI: 10.1016/j.pbiomolbio.2012.06.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 12/20/2022]
Abstract
ABC transporters constitute one of the largest protein families across the kingdoms of archaea, eubacteria and eukarya. They couple ATP hydrolysis to vectorial translocation of diverse substrates across membranes. The ABC transporter architecture comprises two transmembrane domains and two cytosolic ATP-binding cassettes. During 2002-2012, nine prokaryotic ABC transporter structures and two eukaryotic structures have been solved to medium resolution. Despite a wealth of biochemical, biophysical, and structural data, fundamental questions remain regarding the coupling of ATP hydrolysis to unidirectional substrate translocation, and the mechanistic suite of steps involved. The mechanics of the ATP cassette dimer is defined most popularly by the 'Switch Model', which proposes that hydrolysis in each protomer is sequential, and that as the sites are freed of nucleotide, the protomers lose contact across a large solvent-filled gap of 20-30 Å; as captured in several X-ray solved structures. Our 'Constant Contact' model for the operational mechanics of ATP binding and hydrolysis in the ATP-binding cassettes is derived from the 'alternating sites' model, proposed in 1995, and which requires an intrinsic asymmetry in the ATP sites, but does not require the partner protomers to lose contact. Thus one of the most debated issues regarding the function of ABC transporters is whether the cooperative mechanics of ATP hydrolysis requires the ATP cassettes to separate or remain in constant contact and this dilemma is discussed at length in this review.
Collapse
Affiliation(s)
- Anthony M George
- School of Medical and Molecular Biosciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.
| | | |
Collapse
|
21
|
Abstract
Multidrug resistance proteins that belong to the ATP-binding cassette family like the human P-glycoprotein (ABCB1 or Pgp) are responsible for many failed cancer and antiviral chemotherapies because these membrane transporters remove the chemotherapeutics from the targeted cells. Understanding the details of the catalytic mechanism of Pgp is therefore critical to the development of inhibitors that might overcome these resistances. In this work, targeted molecular dynamics techniques were used to elucidate catalytically relevant structures of Pgp. Crystal structures of homologues in four different conformations were used as intermediate targets in the dynamics simulations. Transitions from conformations that were wide open to the cytoplasm to transition state conformations that were wide open to the extracellular space were studied. Twenty-six nonredundant transitional protein structures were identified from these targeted molecular dynamics simulations using evolutionary structure analyses. Coupled movement of nucleotide binding domains (NBDs) and transmembrane domains (TMDs) that form the drug binding cavities were observed. Pronounced twisting of the NBDs as they approached each other as well as the quantification of a dramatic opening of the TMDs to the extracellular space as the ATP hydrolysis transition state was reached were observed. Docking interactions of 21 known transport ligands or inhibitors were analyzed with each of the 26 transitional structures. Many of the docking results obtained here were validated by previously published biochemical determinations. As the ATP hydrolysis transition state was approached, drug docking in the extracellular half of the transmembrane domains seemed to be destabilized as transport ligand exit gates opened to the extracellular space.
Collapse
Affiliation(s)
- John G Wise
- Department of Biological Sciences, Center for Drug Discovery, Design and Delivery at Dedman College, and Center for Scientific Computation, Southern Methodist University, Dallas, Texas 75275-0376, USA.
| |
Collapse
|
22
|
Abstract
Pgp (P-glycoprotein) (ABCB1) is an ATP-powered efflux pump which can transport hundreds of structurally unrelated hydrophobic amphipathic compounds, including therapeutic drugs, peptides and lipid-like compounds. This 170 kDa polypeptide plays a crucial physiological role in protecting tissues from toxic xenobiotics and endogenous metabolites, and also affects the uptake and distribution of many clinically important drugs. It forms a major component of the blood-brain barrier and restricts the uptake of drugs from the intestine. The protein is also expressed in many human cancers, where it probably contributes to resistance to chemotherapy treatment. Many chemical modulators have been identified that block the action of Pgp, and may have clinical applications in improving drug delivery and treating cancer. Pgp substrates are generally lipid-soluble, and partition into the membrane before the transporter expels them into the aqueous phase, much like a 'hydrophobic vacuum cleaner'. The transporter may also act as a 'flippase', moving its substrates from the inner to the outer membrane leaflet. An X-ray crystal structure shows that drugs interact with Pgp within the transmembrane regions by fitting into a large flexible binding pocket, which can accommodate several substrate molecules simultaneously. The nucleotide-binding domains of Pgp appear to hydrolyse ATP in an alternating manner; however, it is still not clear whether transport is driven by ATP hydrolysis or ATP binding. Details of the steps involved in the drug-transport process, and how it is coupled to ATP hydrolysis, remain the object of intensive study.
Collapse
|
23
|
Verhalen B, Ernst S, Börsch M, Wilkens S. Dynamic ligand-induced conformational rearrangements in P-glycoprotein as probed by fluorescence resonance energy transfer spectroscopy. J Biol Chem 2011; 287:1112-27. [PMID: 22086917 DOI: 10.1074/jbc.m111.301192] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
P-glycoprotein (Pgp), a member of the ATP-binding cassette transporter family, functions as an ATP hydrolysis-driven efflux pump to rid the cell of toxic organic compounds, including a variety of drugs used in anticancer chemotherapy. Here, we used fluorescence resonance energy transfer (FRET) spectroscopy to delineate the structural rearrangements the two nucleotide binding domains (NBDs) are undergoing during the catalytic cycle. Pairs of cysteines were introduced into equivalent regions in the N- and C-terminal NBDs for labeling with fluorescent dyes for ensemble and single-molecule FRET spectroscopy. In the ensemble FRET, a decrease of the donor to acceptor (D/A) ratio was observed upon addition of drug and ATP. Vanadate trapping further decreased the D/A ratio, indicating close association of the two NBDs. One of the cysteine mutants was further analyzed using confocal single-molecule FRET spectroscopy. Single Pgp molecules showed fast fluctuations of the FRET efficiencies, indicating movements of the NBDs on a time scale of 10-100 ms. Populations of low, medium, and high FRET efficiencies were observed during drug-stimulated MgATP hydrolysis, suggesting the presence of at least three major conformations of the NBDs during catalysis. Under conditions of vanadate trapping, most molecules displayed high FRET efficiency states, whereas with cyclosporin, more molecules showed low FRET efficiency. Different dwell times of the FRET states were found for the distinct biochemical conditions, with the fastest movements during active turnover. The FRET spectroscopy observations are discussed in context of a model of the catalytic mechanism of Pgp.
Collapse
Affiliation(s)
- Brandy Verhalen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
24
|
|
25
|
A gene optimization strategy that enhances production of fully functional P-glycoprotein in Pichia pastoris. PLoS One 2011; 6:e22577. [PMID: 21826197 PMCID: PMC3149604 DOI: 10.1371/journal.pone.0022577] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 06/24/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Structural and biochemical studies of mammalian membrane proteins remain hampered by inefficient production of pure protein. We explored codon optimization based on highly expressed Pichia pastoris genes to enhance co-translational folding and production of P-glycoprotein (Pgp), an ATP-dependent drug efflux pump involved in multidrug resistance of cancers. METHODOLOGY/PRINCIPAL FINDINGS Codon-optimized "Opti-Pgp" and wild-type Pgp, identical in primary protein sequence, were rigorously analyzed for differences in function or solution structure. Yeast expression levels and yield of purified protein from P. pastoris (∼130 mg per kg cells) were about three-fold higher for Opti-Pgp than for wild-type protein. Opti-Pgp conveyed full in vivo drug resistance against multiple anticancer and fungicidal drugs. ATP hydrolysis by purified Opti-Pgp was strongly stimulated ∼15-fold by verapamil and inhibited by cyclosporine A with binding constants of 4.2±2.2 µM and 1.1±0.26 µM, indistinguishable from wild-type Pgp. Maximum turnover number was 2.1±0.28 µmol/min/mg and was enhanced by 1.2-fold over wild-type Pgp, likely due to higher purity of Opti-Pgp preparations. Analysis of purified wild-type and Opti-Pgp by CD, DSC and limited proteolysis suggested similar secondary and ternary structure. Addition of lipid increased the thermal stability from T(m) ∼40 °C to 49 °C, and the total unfolding enthalpy. The increase in folded state may account for the increase in drug-stimulated ATPase activity seen in presence of lipids. CONCLUSION The significantly higher yields of protein in the native folded state, higher purity and improved function establish the value of our gene optimization approach, and provide a basis to improve production of other membrane proteins.
Collapse
|
26
|
Abbasi M, Lavasanifar A, Uludaˇ H. Recent attempts at RNAi-mediated P-glycoprotein downregulation for reversal of multidrug resistance in cancer. Med Res Rev 2011; 33:33-53. [DOI: 10.1002/med.20244] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Meysam Abbasi
- Department of Biomedical Engineering, Faculty of Medicine; University of Alberta; Edmonton Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering; University of Alberta; Edmonton Canada
| | - Hasan Uludaˇ
- Department of Biomedical Engineering, Faculty of Medicine; University of Alberta; Edmonton Canada
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering; University of Alberta; Edmonton Canada
| |
Collapse
|
27
|
Siarheyeva A, Liu R, Sharom FJ. Characterization of an asymmetric occluded state of P-glycoprotein with two bound nucleotides: implications for catalysis. J Biol Chem 2010; 285:7575-86. [PMID: 20061384 DOI: 10.1074/jbc.m109.047290] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (ABCB1), a member of the ABC superfamily, functions as an ATP-driven multidrug efflux pump. The catalytic cycle of ABC proteins is believed to involve formation of a sandwich dimer in which two ATP molecules are bound at the interface of the nucleotide binding domains (NBDs). However, such dimers have only been observed in isolated NBD subunits and catalytically arrested mutants, and it is still not understood how ATP hydrolysis is coordinated between the two NBDs. We report for the first time the characterization of an asymmetric state of catalytically active native P-glycoprotein with two bound molecules of adenosine 5'-(gamma-thio)triphosphate (ATPgammaS), one of low affinity (K(d) 0.74 mm), and one "occluded" nucleotide of 120-fold higher affinity (K(d) 6 microm). ATPgammaS also interacts with P-glycoprotein with high affinity as assessed by inhibition of ATP hydrolysis and protection from covalent labeling of a Walker A Cys residue, whereas other non-hydrolyzable ATP analogues do not. Binding of ATPgammaS (but not ATP) causes Trp residue heterogeneity, as indicated by collisional quenching, suggesting that it may induce conformational asymmetry. Asymmetric ATPgammaS-bound P-glycoprotein does not display reduced binding affinity for drugs, implying that transport is not driven by ATP binding and likely takes place at a later stage of the catalytic cycle. We propose that this asymmetric state with two bound nucleotides represents the next intermediate on the path toward ATP hydrolysis after nucleotide binding, and an alternating sites mode of action is achieved by simultaneous switching of the two active sites between high and low affinity states.
Collapse
Affiliation(s)
- Alena Siarheyeva
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
28
|
Strict coupling between CFTR's catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations. Proc Natl Acad Sci U S A 2009; 107:1241-6. [PMID: 19966305 DOI: 10.1073/pnas.0911061107] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CFTR, the ABC protein defective in cystic fibrosis, functions as an anion channel. Once phosphorylated by protein kinase A, a CFTR channel is opened and closed by events at its two cytosolic nucleotide binding domains (NBDs). Formation of a head-to-tail NBD1/NBD2 heterodimer, by ATP binding in two interfacial composite sites between conserved Walker A and B motifs of one NBD and the ABC-specific signature sequence of the other, has been proposed to trigger channel opening. ATP hydrolysis at the only catalytically competent interfacial site is suggested to then destabilize the NBD dimer and prompt channel closure. But this gating mechanism, and how tightly CFTR channel opening and closing are coupled to its catalytic cycle, remains controversial. Here we determine the distributions of open burst durations of individual CFTR channels, and use maximum likelihood to evaluate fits to equilibrium and nonequilibrium mechanisms and estimate the rate constants that govern channel closure. We examine partially and fully phosphorylated wild-type CFTR channels, and two mutant CFTR channels, each bearing a deleterious mutation in one or other composite ATP binding site. We show that the wild-type CFTR channel gating cycle is essentially irreversible and tightly coupled to the ATPase cycle, and that this coupling is completely destroyed by the NBD2 Walker B mutation D1370N but only partially disrupted by the NBD1 Walker A mutation K464A.
Collapse
|
29
|
Mutations in the conserved glycine and serine of the MutS ABC signature motif affect nucleotide exchange, kinetics of sliding clamp release of mismatch and mismatch repair. Mutat Res 2009; 684:56-65. [PMID: 19954745 DOI: 10.1016/j.mrfmmm.2009.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/13/2009] [Accepted: 11/24/2009] [Indexed: 12/19/2022]
Abstract
The MutS protein controls genomic stability by coordinating recognition and repair of DNA mismatches with ATP utilization. The nature of this coordination is unclear. This study demonstrates the importance of a highly conserved flexible loop found in Escherichia coli MutS (residues 658-670) in DNA mismatch repair. This loop is speculated to be analogous to the ABC signature motif of drug transporters based on its proximity to the ATP catalytic site in crystal structures. Our studies show that amino acid residues G666 and S668 control MutS functions subsequent to mismatch recognition by MutS, i.e., nucleotide-mediated exchange and ATP-dependent dissociation from mismatch. G666V mutation affects mismatch-provoked ADP-ATP exchange and results in slower dissociation kinetics of MutS from the mismatch while S668A mutation affects stable clamp formation and dissociation kinetics but does not affect nucleotide exchange. Both mutants harbor defects in ATP hydrolysis and cause a significant mutator phenotype in vivo. The mutator effect of S668A is indistinguishable from that of a MutS-deficient background and is similar to that seen with G658A. Neither mutations affect protein stability or cause a dominant mutator effect. Together with our studies on G658, D661 and F670 [1], this study implicates the signature motif as a primary regulator of MutS function and suggests concerted action of the individual amino acid residues within this motif in mediating communication between the Walker and mismatch recognition domains.
Collapse
|
30
|
ABC transporters: a riddle wrapped in a mystery inside an enigma. Trends Biochem Sci 2009; 34:520-31. [PMID: 19748784 DOI: 10.1016/j.tibs.2009.06.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/22/2009] [Accepted: 06/24/2009] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) transporters form one of the largest and most ancient of protein families. ABC transporters couple hydrolysis of ATP to vectorial translocation of diverse substrates across cellular membranes. Many human ABC transporters are medically important in causing, for example, multidrug resistance to cytotoxic drugs. Seven complete prokaryotic structures and one eukaryotic structure have been solved for transporters from 2002 to date, and a wealth of research is being conducted on and around these structures to resolve the mechanistic conundrum of how these transporters couple ATP hydrolysis in cytosolic domains to substrate translocation through the transmembrane pore. Many questions remained unanswered about this mechanism, despite a plethora of data and a number of interesting and controversial models.
Collapse
|
31
|
Gould AD, Telmer PG, Shilton BH. Stimulation of the maltose transporter ATPase by unliganded maltose binding protein. Biochemistry 2009; 48:8051-61. [PMID: 19630440 PMCID: PMC2809251 DOI: 10.1021/bi9007066] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP hydrolysis by the maltose transporter (MalFGK(2)) is regulated by maltose binding protein (MBP). Binding of maltose to MBP brings about a conformational change from open to closed that leads to a strong stimulation of the MalFGK(2) ATPase. In this study, we address the long-standing but enigmatic observation that unliganded MBP is also able to stimulate MalFGK(2). Although the mechanism of this stimulation is not understood, it is sometimes attributed to a small amount of closed (but unliganded) MBP that may exist in solution. To gain insight into how MBP regulates the MalFGK(2) ATPase, we have investigated whether the open or the closed conformation of MBP is responsible for MalFGK(2) stimulation in the absence of maltose. The effect of MBP concentration on the stimulation of MalFGK(2) was assessed: for unliganded MBP, the apparent K(M) for stimulation of MalFGK(2) was below 1 microM, while for maltose-bound MBP, the K(M) was approximately 15 microM. We show that engineered MBP molecules in which the open-closed equilibrium has been shifted toward the closed conformation have a decreased ability to stimulate MalFGK(2). These results indicate that stimulation of the MalFGK(2) ATPase by unliganded MBP does not proceed through a closed conformation and instead must operate through a different mechanism than stimulation by liganded MBP. One possible explanation is that the open conformation is able to activate the MalFGK(2) ATPase directly.
Collapse
Affiliation(s)
| | | | - Brian H. Shilton
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario Canada N6A 5C1
| |
Collapse
|
32
|
Seeger MA, van Veen HW. Molecular basis of multidrug transport by ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1794:725-37. [PMID: 19135557 DOI: 10.1016/j.bbapap.2008.12.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/01/2008] [Accepted: 12/05/2008] [Indexed: 01/15/2023]
Abstract
Multidrug ABC transporters such as the human multidrug resistance P-glycoprotein (ABCB1) play an important role in the extrusion of drugs from the cell and their overexpression can be a cause of failure of anticancer and antimicrobial chemotherapy. These transport systems contain two nucleotide-binding domains (NBDs) where ATP is bound and hydrolyzed and two membrane domains (MDs) which mediate vectorial transport of substrates across the cell membrane. Recent crystal structures of the bacterial ABCB1 homologues Sav1866 from Staphylococcus aureus and MsbA from Salmonella typhimurium and other organisms shed light on the possible conformational states adopted by multidrug ABC transporters during transport. These structures help to interpret cellular and biochemical data gathered on these transport proteins over the past three decades. However, there are contradictory views on how the catalytic cycle of ATP binding and hydrolysis by the NBDs is linked to the change in drug binding affinity at the MDs, which underlies the capture (high affinity) of the transported drug on one side of the membrane and its release (low affinity) on the other. This review provides an overview of the current evidence for the different transport models and establishes the most recent structure-function relationships in multidrug ABC transporters.
Collapse
Affiliation(s)
- Markus A Seeger
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | |
Collapse
|
33
|
Qin L, Zheng J, Grant CE, Jia Z, Cole SPC, Deeley RG. Residues responsible for the asymmetric function of the nucleotide binding domains of multidrug resistance protein 1. Biochemistry 2009; 47:13952-65. [PMID: 19063607 DOI: 10.1021/bi801532g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The two nucleotide binding domains (NBDs) of ATP binding cassette (ABC) transporters dimerize to form composite nucleotide binding sites (NBSs) each containing Walker A and B motifs from one domain and the ABC "C" signature from the other. In many ABC proteins, the NBSs are thought to be functionally equivalent. However, this is not the case for ABCC proteins, such as MRP1, in which NBS1 containing the Walker A and B motifs from the N-proximal NBD1 typically binds ATP with high affinity but has low hydrolytic activity, while the reverse is true of NBS2. A notable feature of NBD1 of the ABCC proteins is the lack of a catalytic Glu residue following the core Walker B motif. In multidrug resistance protein (MRP) 1, this residue is Asp (D793). Previously, we demonstrated that mutation of D793 to Glu was sufficient to increase ATP hydrolysis at NBS1, but paradoxically, transport activity decreased by 50-70% as a result of tight binding of ADP at the mutated NBS1. Here, we identify two atypical amino acids in NBD1 that contribute to the retention of ADP. We found that conversion of Trp653 to Tyr and/or Pro794 to Ala enhanced transport activity of the D793E mutant and the release of ADP from NBS1. Moreover, introduction of the P794A mutation into wild-type MRP1 increased transport of leukotriene C(4) approximately 2-fold. Molecular dynamic simulations revealed that, while the D793E mutation increased hydrolysis of ATP, the presence of the adjacent Pro794, rather than the more typical Ala, decreased flexibility of the region linking Walker B and the D-loop, markedly diminishing the rate of release of Mg(2+) and ADP. Overall, these results suggest that the rate of release of ADP by NBD1 in the D793E background may be the rate-limiting step in the transport cycle of MRP1.
Collapse
Affiliation(s)
- Lei Qin
- Division of Cancer Biology and Genetics, Cancer Research Institute, Departments of Biochemistry, Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Mg2+ -dependent ATP occlusion at the first nucleotide-binding domain (NBD1) of CFTR does not require the second (NBD2). Biochem J 2008; 416:129-36. [PMID: 18605986 DOI: 10.1042/bj20081068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ATP binding to the first and second NBDs (nucleotide-binding domains) of CFTR (cystic fibrosis transmembrane conductance regulator) are bivalent-cation-independent and -dependent steps respectively [Aleksandrov, Aleksandrov, Chang and Riordan (2002) J. Biol. Chem. 277, 15419-15425]. Subsequent to the initial binding, Mg(2+) drives rapid hydrolysis at the second site, while promoting non-exchangeable trapping of the nucleotide at the first site. This occlusion at the first site of functional wild-type CFTR is somewhat similar to that which occurs when the catalytic glutamate residues in both of the hydrolytic sites of P-glycoprotein are mutated, which has been proposed to be the result of dimerization of the two NBDs and represents a transient intermediate formed during ATP hydrolysis [Tombline and Senior (2005) J. Bioenerg. Biomembr. 37, 497-500]. To test the possible relevance of this interpretation to CFTR, we have now characterized the process by which NBD1 occludes [(32)P]N(3)ATP (8-azido-ATP) and [(32)P]N(3)ADP (8-azido-ADP). Only N(3)ATP, but not N(3)ADP, can be bound initially at NBD1 in the absence of Mg(2+). Despite the lack of a requirement for Mg(2+) for ATP binding, retention of the NTP at 37 degrees C was dependent on the cation. However, at reduced temperature (4 degrees C), N(3)ATP remains locked in the binding pocket with virtually no reduction over a 1 h period, even in the absence of Mg(2+). Occlusion occurred identically in a DeltaNBD2 construct, but not in purified recombinant NBD1, indicating that the process is dependent on the influence of regions of CFTR in addition to NBD1, but not NBD2.
Collapse
|
35
|
Both maltose-binding protein and ATP are required for nucleotide-binding domain closure in the intact maltose ABC transporter. Proc Natl Acad Sci U S A 2008; 105:12837-42. [PMID: 18725638 DOI: 10.1073/pnas.0803799105] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The maltose transporter MalFGK(2) of Escherichia coli is a member of the ATP-binding cassette superfamily. A periplasmic maltose-binding protein (MBP) delivers maltose to MalFGK(2) and stimulates its ATPase activity. Site-directed spin labeling EPR spectroscopy was used to study the opening and closing of the nucleotide-binding interface of MalFGK(2) during the catalytic cycle. In the intact transporter, closure of the interface coincides not just with the binding of ATP, as seen with isolated nucleotide-binding domains, but requires both MBP and ATP, implying that MBP stimulates ATPase activity by promoting the closure of the nucleotide-binding interface. After ATP hydrolysis, with MgADP and MBP bound, the nucleotide-binding interface resides in a semi-open configuration distinct from the fully open configuration seen in the absence of any ligand. We propose that P(i) release coincides with the reorientation of transmembrane helices to an inward-facing conformation and the final step of maltose translocation into the cell.
Collapse
|
36
|
Acharya S. Mutations in the signature motif in MutS affect ATP-induced clamp formation and mismatch repair. Mol Microbiol 2008; 69:1544-59. [PMID: 18673453 DOI: 10.1111/j.1365-2958.2008.06386.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SUMMARY MutS protein dimer recognizes and co-ordinates repair of DNA mismatches. Mismatch recognition by the N-terminal mismatch recognition domain and subsequent downstream signalling by MutS appear coupled to the C-terminal ATP catalytic site, Walker box, through nucleotide-mediated conformational transitions. Details of this co-ordination are not understood. The focus of this study is a conserved loop in Escherichia coli MutS that is predicted to mediate cross-talk between the two ATP catalytic sites in MutS homodimer. Mutagenesis was employed to assess the role of this loop in regulating MutS function. All mutants displayed mismatch repair defects in vivo. Biochemical characterization further revealed defects in ATP binding, ATP hydrolysis as well as effective mismatch recognition. The kinetics of initial burst of ATP hydrolysis was similar to wild type but the magnitude of the burst was reduced for the mutants. Given its proximity to the ATP bound in the opposing monomer in the crystal and its potential analogy with signature motif of ABC transporters, the results strongly suggest that the loop co-ordinates ATP binding/hydrolysis in trans by the two catalytic sites. Importantly, our data reveal that the loop plays a direct role in co-ordinating conformational changes involved in long-range communication between Walker box and mismatch recognition domains.
Collapse
Affiliation(s)
- Samir Acharya
- Department of Molecular Virology, Immunology and Medical Genetics, and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
37
|
Sauna ZE, Kim IW, Ambudkar SV. Genomics and the mechanism of P-glycoprotein (ABCB1). J Bioenerg Biomembr 2008; 39:481-7. [PMID: 18058211 DOI: 10.1007/s10863-007-9115-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The development of effective clinical interventions against multidrug resistance (MDR) in cancer remains a significant challenge. Single nucleotide polymorphisms (SNPs) contribute to wide variations in how individuals respond to medications and there are several SNPs in human P-glycoprotein (P-gp) that may influence the interactions of drug-substrates with the transporter. Interestingly, even some of the synonymous SNPs have functional consequences for P-gp. It is also becoming increasingly evident that an understanding of the transport pathway of P-gp may be necessary to design effective modulators. In this review we discuss: (1) The potential importance of SNPs (both synonymous and non-synonymous) in MDR and (2) How new concepts that have emerged from structural studies with isolated nucleotide binding domains of bacterial ABC transporters have prompted biochemical studies on P-gp, leading to a better understanding of the mechanism of P-gp mediated transport. Our results suggest that the power-stroke is provided only after formation of the pre-hydrolysis transition-like (E.S) state during ATP hydrolysis.
Collapse
Affiliation(s)
- Zuben E Sauna
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Building 37, 37 Convent Drive, Bethesda, MD 20892-4256, USA
| | | | | |
Collapse
|
38
|
Abstract
CLC-0 and cystic fibrosis transmembrane conductance regulator (CFTR) Cl−channels play important roles in Cl−transport across cell membranes. These two proteins belong to, respectively, the CLC and ABC transport protein families whose members encompass both ion channels and transporters. Defective function of members in these two protein families causes various hereditary human diseases. Ion channels and transporters were traditionally viewed as distinct entities in membrane transport physiology, but recent discoveries have blurred the line between these two classes of membrane transport proteins. CLC-0 and CFTR can be considered operationally as ligand-gated channels, though binding of the activating ligands appears to be coupled to an irreversible gating cycle driven by an input of free energy. High-resolution crystallographic structures of bacterial CLC proteins and ABC transporters have led us to a better understanding of the gating properties for CLC and CFTR Cl−channels. Furthermore, the joined force between structural and functional studies of these two protein families has offered a unique opportunity to peek into the evolutionary link between ion channels and transporters. A promising byproduct of this exercise is a deeper mechanistic insight into how different transport proteins work at a fundamental level.
Collapse
|
39
|
Tombline G, Holt JJ, Gannon MK, Donnelly DJ, Wetzel B, Sawada GA, Raub TJ, Detty MR. ATP occlusion by P-glycoprotein as a surrogate measure for drug coupling. Biochemistry 2008; 47:3294-307. [PMID: 18275155 DOI: 10.1021/bi7021393] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The multidrug efflux pump P-glycoprotein (Pgp) couples drug transport to ATP hydrolysis. Previously, using a synthetic library of tetramethylrosamine ( TMR) analogues, we observed significant variation in ATPase stimulation ( V m (D)). Concentrations required for half-maximal ATPase stimulation ( K m (D)) correlated with ATP hydrolysis transition-state stabilization and ATP occlusion (EC 50 (D)) at a single site. Herein, we characterize several TMR analogues that elicit modest turnover ( k cat <or= 1-2 s (-1)) compared to verapamil (VER) ( k cat approximately 10 s (-1)). Apparent ATPase activities manifest as nearly equivalent to basal values. In some cases, K m (D) parameters for drug stimulation of ATPase could not be accurately determined, yet these same TMR analogues promoted ATP occlusion at relatively low concentrations ( approximately 0.4-40 microM). Moreover, the TMR analogues competitively inhibited VER-dependent ATPase activity at concentrations similar to those required for ATP occlusion. Finally, the TMR analogues facilitated uptake of calcein-AM into CR1R12 and MDCK-MDR1 cells and are actively transported by Pgp in monolayers of MDCK-MDR1 cells at similarly low concentrations ( approximately 1-20 microM). ADP.V i release kinetics were identical in the presence of the TMR derivatives, VER, or in the absence of drug, suggesting that slow turnover is not likely due to slow release of the ATP hydrolysis products ADP and P i. These data support the partition model in which drug site occupancy converts residual basal ATPase activity to a drug-dependent mechanism even in cases where stimulation appears to be exactly compensatory to basal values. It is noteworthy that when compared to previously reported TMR analogues, subtle modification of the TMR scaffold can confer large differences in ATP turnover.
Collapse
Affiliation(s)
- Gregory Tombline
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lee JY, Urbatsch IL, Senior AE, Wilkens S. Nucleotide-induced structural changes in P-glycoprotein observed by electron microscopy. J Biol Chem 2007; 283:5769-79. [PMID: 18093977 DOI: 10.1074/jbc.m707028200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (Pgp) is an ATP hydrolysis driven multidrug efflux pump, which, when overexpressed in the plasma membrane of certain cancers, can lead to the failure of chemotherapy. Previously, we have presented a projection structure of nucleotide-free mouse Pgp from electron microscopic images of lipid monolayer-generated two-dimensional crystals ( Lee, J. Y., Urbatsch, I. L., Senior, A. E., and Wilkens, S. (2002) J. Biol. Chem. 277, 40125-40131 ). Here we have analyzed the structure of cysteine-free human Pgp from two-dimensional crystals that were generated with the same lipid-monolayer technique in the absence and presence of various nucleotides. The images show that human Pgp has a similar structure to the mouse protein. Furthermore, the analysis of projection structures obtained under different nucleotide conditions suggests that Pgp can exist in at least two major conformations, one of which shows a central cavity between the N- and C-terminal halves of the molecule and another in which the two halves have moved sideways, thereby closing the central cavity. Intermediate conformations were observed for some nucleotide/vanadate combinations. A low-resolution, three-dimensional model of human Pgp was calculated from tilted specimen crystallized in the presence of the non-hydrolyzable nucleotide analog, adenosine 5'-O-(thiotriphosphate). The structural analysis presented here adds to the emerging picture that multidrug ABC transporters function by switching between two major conformations in a nucleotide-dependent manner.
Collapse
Affiliation(s)
- Jyh-Yeuan Lee
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
41
|
Sauna ZE, Kim IW, Nandigama K, Kopp S, Chiba P, Ambudkar SV. Catalytic cycle of ATP hydrolysis by P-glycoprotein: evidence for formation of the E.S reaction intermediate with ATP-gamma-S, a nonhydrolyzable analogue of ATP. Biochemistry 2007; 46:13787-99. [PMID: 17988154 DOI: 10.1021/bi701385t] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural and biochemical studies of ATP-binding cassette (ABC) transporters suggest that an ATP-driven dimerization of the nucleotide-binding domains (NBDs) is an important reaction intermediate of the transport cycle. Moreover, an asymmetric occlusion of ATP at one of the two ATP sites of P-glycoprotein (Pgp) may follow the formation of the symmetric dimer. It has also been postulated that ADP drives the dissociation of the dimer. In this study, we show that the E.S conformation of Pgp (previously demonstrated in the E556Q/E1201Q mutant Pgp) can be obtained with the wild-type protein by use of the nonhydrolyzable ATP analogue ATP-gamma-S. ATP-gamma-S is occluded into the Pgp NBDs at 34 degrees C but not at 4 degrees C, whereas ATP is not occluded at either temperature. Using purified Pgp incorporated into proteoliposomes and ATP-gamma-35S, we demonstrate that the occlusion of ATP-gamma-35S has an Eact of 60 kJ/mol and the stoichiometry of ATP-gamma-35S:Pgp is 1:1 (mol/mol). Additionally, in the conserved Walker B mutant (E556Q/E1201Q) of Pgp, we find occlusion of the nucleoside triphosphate but not the nucleoside diphosphate. Furthermore, Pgp in the occluded nucleotide conformation has reduced affinity for transport substrates. These data provide evidence for the ATP-driven dimerization and ADP-driven dissociation of the NBDs, and although two ATP molecules may initiate dimerization, only one is driven to an occluded pre-hydrolysis intermediate state. Thus, in a full-length ABC transporter like Pgp, it is unlikely that there is complete association and disassociation of NBDs and the occluded nucleotide conformation at one of the NBDs provides the power-stroke at the transport-substrate site.
Collapse
Affiliation(s)
- Zuben E Sauna
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4256, USA
| | | | | | | | | | | |
Collapse
|
42
|
Daus ML, Grote M, Müller P, Doebber M, Herrmann A, Steinhoff HJ, Dassa E, Schneider E. ATP-driven MalK dimer closure and reopening and conformational changes of the "EAA" motifs are crucial for function of the maltose ATP-binding cassette transporter (MalFGK2). J Biol Chem 2007; 282:22387-96. [PMID: 17545154 DOI: 10.1074/jbc.m701979200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have investigated conformational changes of the purified maltose ATP-binding cassette transporter (MalFGK(2)) upon binding of ATP. The transport complex is composed of a heterodimer of the hydrophobic subunits MalF and MalG constituting the translocation pore and of a homodimer of MalK, representing the ATP-hydrolyzing subunit. Substrate is delivered to the transporter in complex with periplasmic maltose-binding protein (MalE). Cross-linking experiments with a variant containing an A85C mutation within the Q-loop of each MalK monomer indicated an ATP-induced shortening of the distance between both monomers. Cross-linking caused a substantial inhibition of MalE-maltose-stimulated ATPase activity. We further demonstrated that a mutation affecting the "catalytic carboxylate" (E159Q) locks the MalK dimer in the closed state, whereas a transporter containing the "ABC signature" mutation Q140K permanently resides in the resting state. Cross-linking experiments with variants containing the A85C mutation combined with cysteine substitutions in the conserved EAA motifs of MalF and MalG, respectively, revealed close proximity of these residues in the resting state. The formation of a MalK-MalG heterodimer remained unchanged upon the addition of ATP, indicating that MalG-EAA moves along with MalK during dimer closure. In contrast, the yield of MalK-MalF dimers was substantially reduced. This might be taken as further evidence for asymmetric functions of both EAA motifs. Cross-linking also caused inhibition of ATPase activity, suggesting that transporter function requires conformational changes of both EAA motifs. Together, our data support ATP-driven MalK dimer closure and reopening as crucial steps in the translocation cycle of the intact maltose transporter and are discussed with respect to a current model.
Collapse
Affiliation(s)
- Martin L Daus
- Institut für Biologie/Bakterienphysiologie, Humboldt Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sharom FJ. Shedding light on drug transport: structure and function of the P-glycoprotein multidrug transporter (ABCB1). Biochem Cell Biol 2007; 84:979-92. [PMID: 17215884 DOI: 10.1139/o06-199] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
P-glycoprotein (Pgp; ABCB1), a member of the ATP-binding cassette (ABC) superfamily, exports structurally diverse hydrophobic compounds from the cell, driven by ATP hydrolysis. Pgp expression has been linked to the efflux of chemotherapeutic drugs in human cancers, leading to multidrug resistance (MDR). The protein also plays an important physiological role in limiting drug uptake in the gut and entry into the brain. Substrates partition into the lipid bilayer before interacting with Pgp, which has been proposed to function as a hydrophobic vacuum cleaner. Low- and medium-resolution structural models of Pgp suggest that the 2 nucleotide-binding domains are closely associated to form a nucleotide sandwich dimer. Pgp is an outwardly directed flippase for fluorescent phospholipid and glycosphingolipid derivatives, which suggests that it may also translocate drug molecules from the inner to the outer membrane leaflet. The ATPase catalytic cycle of the protein is thought to proceed via an alternating site mechanism, although the details are not understood. The lipid bilayer plays an important role in Pgp function, and may regulate both the binding and transport of drugs. This review focuses on the structure and function of Pgp, and highlights the importance of fluorescence spectroscopic techniques in exploring the molecular details of this enigmatic transporter.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology
- ATP-Binding Cassette Transporters/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Awards and Prizes
- Biological Transport/drug effects
- Drug Resistance, Multiple
- Humans
- Models, Biological
- Models, Molecular
- Organic Anion Transporters/metabolism
- Spectrometry, Fluorescence
- Structure-Activity Relationship
- Substrate Specificity
Collapse
Affiliation(s)
- Frances J Sharom
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
44
|
Sauna ZE, Ambudkar SV. About a switch: how P-glycoprotein (ABCB1) harnesses the energy of ATP binding and hydrolysis to do mechanical work. Mol Cancer Ther 2007; 6:13-23. [PMID: 17237262 DOI: 10.1158/1535-7163.mct-06-0155] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The efflux of drugs by the multidrug transporter P-glycoprotein (Pgp; ABCB1) is one of the principal means by which cancer cells evade chemotherapy and exhibit multidrug resistance. Mechanistic studies of Pgp-mediated transport, however, transcend the importance of this protein per se as they help us understand the transport pathway of the ATP-binding cassette proteins in general. The ATP-binding cassette proteins comprise one of the largest protein families, are central to cellular physiology, and constitute important drug targets. The functional unit of Pgp consists of two nucleotide-binding domains (NBD) and two transmembrane domains that are involved in the transport of drug substrates. Early studies postulated that conformational changes as a result of ATP hydrolysis were transmitted to the transmembrane domains bringing about drug transport. More recent structural and biochemical studies on the other hand suggested that ATP binds at the interface of the two NBDs and induces the formation of a closed dimer, and it has been hypothesized that this dimerization and subsequent ATP hydrolysis powers transport. Based on the mutational and biochemical work on Pgp and structural studies with isolated NBDs, we review proposed schemes for the catalytic cycle of ATP hydrolysis and the transport pathway.
Collapse
Affiliation(s)
- Zuben E Sauna
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 2120, 37 Convent Drive, Bethesda, MD 20892-4256, USA
| | | |
Collapse
|