1
|
Lévêque C, Maulet Y, Wang Q, Rame M, Rodriguez L, Mochida S, Sangiardi M, Youssouf F, Iborra C, Seagar M, Vitale N, El Far O. A Role for the V0 Sector of the V-ATPase in Neuroexocytosis: Exogenous V0d Blocks Complexin and SNARE Interactions with V0c. Cells 2023; 12:cells12050750. [PMID: 36899886 PMCID: PMC10001230 DOI: 10.3390/cells12050750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
V-ATPase is an important factor in synaptic vesicle acidification and is implicated in synaptic transmission. Rotation in the extra-membranous V1 sector drives proton transfer through the membrane-embedded multi-subunit V0 sector of the V-ATPase. Intra-vesicular protons are then used to drive neurotransmitter uptake by synaptic vesicles. V0a and V0c, two membrane subunits of the V0 sector, have been shown to interact with SNARE proteins, and their photo-inactivation rapidly impairs synaptic transmission. V0d, a soluble subunit of the V0 sector strongly interacts with its membrane-embedded subunits and is crucial for the canonic proton transfer activity of the V-ATPase. Our investigations show that the loop 1.2 of V0c interacts with complexin, a major partner of the SNARE machinery and that V0d1 binding to V0c inhibits this interaction, as well as V0c association with SNARE complex. The injection of recombinant V0d1 in rat superior cervical ganglion neurons rapidly reduced neurotransmission. In chromaffin cells, V0d1 overexpression and V0c silencing modified in a comparable manner several parameters of unitary exocytotic events. Our data suggest that V0c subunit promotes exocytosis via interactions with complexin and SNAREs and that this activity can be antagonized by exogenous V0d.
Collapse
Affiliation(s)
- Christian Lévêque
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
| | - Yves Maulet
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67000 Strasbourg, France
| | - Marion Rame
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67000 Strasbourg, France
| | - Léa Rodriguez
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
| | - Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Marion Sangiardi
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
| | - Fahamoe Youssouf
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
| | - Cécile Iborra
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
| | - Michael Seagar
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67000 Strasbourg, France
- Correspondence: (N.V.); or (O.E.F.); Tel.: +33-(0)3-8845-6712 (N.V.); +33-(0)4-9169-8860 (O.E.F.)
| | - Oussama El Far
- INSERM UMR_S 1072, 13015 Marseille, France
- Aix-Marseille Université, 13015 Marseille, France
- Correspondence: (N.V.); or (O.E.F.); Tel.: +33-(0)3-8845-6712 (N.V.); +33-(0)4-9169-8860 (O.E.F.)
| |
Collapse
|
2
|
Feng S, Peng Y, Liu E, Ma H, Qiao K, Zhou A, Liu S, Bu Y. Arabidopsis V-ATPase d2 Subunit Plays a Role in Plant Responses to Oxidative Stress. Genes (Basel) 2020; 11:genes11060701. [PMID: 32630497 PMCID: PMC7349310 DOI: 10.3390/genes11060701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022] Open
Abstract
Vacuolar-type H+-ATPase (V-ATPase), a multisubunit proton pump located on the endomembrane, plays an important role in plant growth. The Arabidopsis thaliana V-ATPase d subunit (VHA-d) consists of two isoforms; AtVHA-d1 and AtVHA-d2. In this study, the function of AtVHA-d2 was investigated. Histochemical analysis revealed that the expression of AtVHA-d1 and AtVHA-d2 was generally highly overlapping in multiple tissues at different developmental stages of Arabidopsis. Subcellular localization revealed that AtVHA-d2 was mainly localized to the vacuole. AtVHA-d2 expression was significantly induced by oxidative stress. Analysis of phenotypic and H2O2 content showed that the atvha-d2 mutant was sensitive to oxidative stress. The noninvasive microtest monitoring demonstrated that the net H+ influx in the atvha-d2 roots was weaker than that in the wild-type under normal conditions. However, oxidative stress resulted in the H+ efflux in atvha-d2 roots, which was significantly different from that in the wild-type. RNA-seq combined with qPCR analysis showed that the expression of several members of the plasma membrane H+-ATPase gene (AtAHA) family in atvha-d2 was significantly different from that in the wild-type. Overall, our results indicate that AtVHA-d2 plays a role in Arabidopsis in response to oxidative stress by affecting H+ flux and AtAHA gene expression.
Collapse
Affiliation(s)
- Shuang Feng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yun Peng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.P.); (E.L.); (H.M.); (K.Q.); (A.Z.)
| | - Enhui Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.P.); (E.L.); (H.M.); (K.Q.); (A.Z.)
| | - Hongping Ma
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.P.); (E.L.); (H.M.); (K.Q.); (A.Z.)
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.P.); (E.L.); (H.M.); (K.Q.); (A.Z.)
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.P.); (E.L.); (H.M.); (K.Q.); (A.Z.)
| | - Shenkui Liu
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin’An 311300, Zhejiang, China;
| | - Yuanyuan Bu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Correspondence: ; Tel.: +86-451-8219-2763
| |
Collapse
|
3
|
Duan X, Yang S, Zhang L, Yang T. V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis. Theranostics 2018; 8:5379-5399. [PMID: 30555553 PMCID: PMC6276090 DOI: 10.7150/thno.28391] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Vacuolar ATPases (V-ATPases) play a critical role in regulating extracellular acidification of osteoclasts and bone resorption. The deficiencies of subunit a3 and d2 of V-ATPases result in increased bone density in humans and mice. One of the traditional drug design strategies in treating osteoporosis is the use of subunit a3 inhibitor. Recent findings connect subunits H and G1 with decreased bone density. Given the controversial effects of ATPase subunits on bone density, there is a critical need to review the subunits of V-ATPase in osteoclasts and their functions in regulating osteoclasts and bone remodeling. In this review, we comprehensively address the following areas: information about all V-ATPase subunits and their isoforms; summary of V-ATPase subunits associated with human genetic diseases; V-ATPase subunits and osteopetrosis/osteoporosis; screening of all V-ATPase subunits variants in GEFOS data and in-house data; spectrum of V-ATPase subunits during osteoclastogenesis; direct and indirect roles of subunits of V-ATPases in osteoclasts; V-ATPase-associated signaling pathways in osteoclasts; interactions among V-ATPase subunits in osteoclasts; osteoclast-specific V-ATPase inhibitors; perspective of future inhibitors or activators targeting V-ATPase subunits in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, the Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, P. R. China
| | - Shaoqing Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, the Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, P. R. China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, P. R. China
| | - Tielin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, People's Republic of China
| |
Collapse
|
4
|
Gopal P, Nartey W, Ragunathan P, Sarathy J, Kaya F, Yee M, Setzer C, Manimekalai MSS, Dartois V, Grüber G, Dick T. Pyrazinoic Acid Inhibits Mycobacterial Coenzyme A Biosynthesis by Binding to Aspartate Decarboxylase PanD. ACS Infect Dis 2017; 3:807-819. [PMID: 28991455 DOI: 10.1021/acsinfecdis.7b00079] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previously, we showed that a major in vitro and in vivo mechanism of resistance to pyrazinoic acid (POA), the bioactive component of the critical tuberculosis (TB) prodrug pyrazinamide (PZA), involves missense mutations in the aspartate decarboxylase PanD, an enzyme required for coenzyme A biosynthesis. What is the mechanism of action of POA? Upon demonstrating that treatment of M. bovis BCG with POA resulted in a depletion of intracellular coenzyme A and confirming that this POA-mediated depletion is prevented by either missense mutations in PanD or exogenous supplementation of pantothenate, we hypothesized that POA binds to PanD and that this binding blocks the biosynthetic pathway. Here, we confirm both hypotheses. First, metabolomic analyses showed that POA treatment resulted in a reduction of the concentrations of all coenzyme A precursors downstream of the PanD-mediated catalytic step. Second, using isothermal titration calorimetry, we established that POA, but not its prodrug PZA, binds to PanD. Binding was abolished for mutant PanD proteins. Taken together, these findings support a mechanism of action of POA in which the bioactive component of PZA inhibits coenzyme A biosynthesis via binding to aspartate decarboxylase PanD. Together with previous works, these results establish PanD as a genetically, metabolically, and biophysically validated target of PZA.
Collapse
Affiliation(s)
- Pooja Gopal
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | - Wilson Nartey
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798
| | - Jansy Sarathy
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Firat Kaya
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Michelle Yee
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | - Claudia Setzer
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | | | - Véronique Dartois
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798
| | - Thomas Dick
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, New Jersey 07103, United States
| |
Collapse
|
5
|
DsbA-DsbAmut fusion chaperon improved soluble expression of human trypsinogen-1 in Escherichia coli. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1519-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Expression, purification and characterization of human vacuolar-type H+-ATPase subunit d1 and d2 in Escherichia coli. Protein Expr Purif 2014; 98:25-31. [DOI: 10.1016/j.pep.2014.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 11/20/2022]
|
7
|
Basak S, Lim J, Manimekalai MSS, Balakrishna AM, Grüber G. Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae. J Biol Chem 2013; 288:11930-9. [PMID: 23476018 DOI: 10.1074/jbc.m113.461533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit F of V-ATPases is proposed to undergo structural alterations during catalysis and reversible dissociation from the V1VO complex. Recently, we determined the low resolution structure of F from Saccharomyces cerevisiae V-ATPase, showing an N-terminal egg shape, connected to a C-terminal hook-like segment via a linker region. To understand the mechanistic role of subunit F of S. cerevisiae V-ATPase, composed of 118 amino acids, the crystal structure of the major part of F, F(1-94), was solved at 2.3 Å resolution. The structural features were confirmed by solution NMR spectroscopy using the entire F subunit. The eukaryotic F subunit consists of the N-terminal F(1-94) domain with four-parallel β-strands, which are intermittently surrounded by four α-helices, and the C terminus, including the α5-helix encompassing residues 103 to 113. Two loops (26)GQITPETQEK(35) and (60)ERDDI(64) are described to be essential in mechanistic processes of the V-ATPase enzyme. The (26)GQITPETQEK(35) loop becomes exposed when fitted into the recently determined EM structure of the yeast V1VO-ATPase. A mechanism is proposed in which the (26)GQITPETQEK(35) loop of subunit F and the flexible C-terminal domain of subunit H move in proximity, leading to an inhibitory effect of ATPase activity in V1. Subunits D and F are demonstrated to interact with subunit d. Together with NMR dynamics, the role of subunit F has been discussed in the light of its interactions in the processes of reversible disassembly and ATP hydrolysis of V-ATPases by transmitting movements of subunit d and H of the VO and V1 sector, respectively.
Collapse
Affiliation(s)
- Sandip Basak
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
8
|
Seidel T, Siek M, Marg B, Dietz KJ. Energization of vacuolar transport in plant cells and its significance under stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:57-131. [PMID: 23809435 DOI: 10.1016/b978-0-12-407696-9.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | | | |
Collapse
|
9
|
Qin A, Cheng TS, Pavlos NJ, Lin Z, Dai KR, Zheng MH. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol 2012; 44:1422-35. [PMID: 22652318 DOI: 10.1016/j.biocel.2012.05.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 01/06/2023]
Abstract
The vacuolar-type H(+)-ATPase (V-ATPase) proton pump is a macromolecular complex composed of at least 14 subunits organized into two functional domains, V(1) and V(0). The complex is located on the ruffled border plasma membrane of bone-resorbing osteoclasts, mediating extracellular acidification for bone demineralization during bone resorption. Genetic studies from mice to man implicate a critical role for V-ATPase subunits in osteoclast-related diseases including osteopetrosis and osteoporosis. Thus, the V-ATPase complex is a potential molecular target for the development of novel anti-resorptive agents useful for the treatment of osteolytic diseases. Here, we review the current structure and function of V-ATPase subunits, emphasizing their exquisite roles in osteoclastic function. In addition, we compare several distinct classes of V-ATPase inhibitors with specific inhibitory effects on osteoclasts. Understanding the structure-function relationship of the osteoclast V-ATPase may lead to the development of osteoclast-specific V-ATPase inhibitors that may serve as alternative therapies for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- A Qin
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Crawley, Australia.
| | | | | | | | | | | |
Collapse
|
10
|
Dip PV, Saw WG, Roessle M, Marshansky V, Grüber G. Solution structure of subunit a, a 104-363, of the Saccharomyces cerevisiae V-ATPase and the importance of its C-terminus in structure formation. J Bioenerg Biomembr 2012; 44:341-50. [DOI: 10.1007/s10863-012-9442-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/19/2012] [Indexed: 11/30/2022]
|
11
|
Abstract
AbstractThe rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F1Fo-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H+-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A1Ao-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.
Collapse
|
12
|
Diaz AA, Tomba E, Lennarson R, Richard R, Bagajewicz MJ, Harrison RG. Prediction of protein solubility inEscherichia coliusing logistic regression. Biotechnol Bioeng 2010; 105:374-83. [DOI: 10.1002/bit.22537] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Saroussi S, Nelson N. The little we know on the structure and machinery of V-ATPase. J Exp Biol 2009; 212:1604-10. [PMID: 19448070 DOI: 10.1242/jeb.025866] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY
The life of every eukaryotic cell depends on the function of vacuolar H+-ATPase (V-ATPase). Today we know that V-ATPase is vital for many more physiological and biochemical processes than it was expected three decades ago when the enzyme was discovered. These range from a crucial role in the function of internal organelles such as vacuoles, lysosomes, synaptic vesicles, endosomes, secretory granules and the Golgi apparatus to the plasma membrane of several organisms and specific tissues, and specialized cells. The overall structure and mechanism of action of the V-ATPase is supposed to be similar to that of the well-characterized F-type ATP synthase (F-ATPase). Both consist of a soluble catalytic domain (V1 or F1) that is coupled to a membrane-spanning domain (Vo or Fo) by one or more `stalk' components. Owing to the complexity and challenging properties of V-ATPase its study is lagging behind that of its relative F-ATPase. Time will tell whether V-ATPase shares an identical mechanism of action with F-ATPase or its mode of operation is unique.
Collapse
Affiliation(s)
- Shai Saroussi
- Biochemistry Department, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nathan Nelson
- Biochemistry Department, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
14
|
Thaker YR, Hunke C, Yau YH, Shochat SG, Li Y, Grüber G. Association of the eukaryotic V1VO ATPase subunits a with d and d with A. FEBS Lett 2009; 583:1090-5. [PMID: 19289121 DOI: 10.1016/j.febslet.2009.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 10/21/2022]
Abstract
Owing to the complex nature of V(1)V(O) ATPases, identification of neighboring subunits is essential for mechanistic understanding of this enzyme. Here, we describe the links between the V(1) headpiece and the V(O)-domain of the yeast V(1)V(O) ATPase via subunit A and d as well as the V(O) subunits a and d using surface plasmon resonance and fluorescence correlation spectroscopy. Binding constants of about 60 and 200 nM have been determined for the a-d and d-A assembly, respectively. The data are discussed in light of subunit a and d forming a peripheral stalk, connecting the catalytic A(3)B(3) hexamer with V(O).
Collapse
Affiliation(s)
- Youg R Thaker
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
15
|
Assembly of subunit d (Vma6p) and G (Vma10p) and the NMR solution structure of subunit G (G(1-59)) of the Saccharomyces cerevisiae V(1)V(O) ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:242-51. [PMID: 19344662 DOI: 10.1016/j.bbabio.2009.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 11/21/2022]
Abstract
Understanding the structural traits of subunit G is essential, as it is needed for V(1)V(O) assembly and function. Here solution NMR of the recombinant N- (G(1-59)) and C-terminal segment (G(61-114)) of subunit G, has been performed in the absence and presence of subunit d of the yeast V-ATPase. The data show that G does bind to subunit d via its N-terminal part, G(1-59) only. The residues of G(1-59) involved in d binding are Gly7 to Lys34. The structure of G(1-59) has been solved, revealing an alpha-helix between residues 10 and 56, whereby the first nine- and the last three residues of G(1-59) are flexible. The surface charge distribution of G(1-59) reveals an amphiphilic character at the N-terminus due to positive and negative charge distribution at one side and a hydrophobic surface on the opposite side of the structure. The C-terminus exhibits a strip of negative residues. The data imply that G(1-59)-d assembly is accomplished by hydrophobic interactions and salt-bridges of the polar residues. Based on the recently determined NMR structure of segment E(18-38) of subunit E of yeast V-ATPase and the presently solved structure of G(1-59), both proteins have been docked and binding epitopes have been analyzed.
Collapse
|
16
|
Grüber G, Marshansky V. New insights into structure-function relationships between archeal ATP synthase (A1A0) and vacuolar type ATPase (V1V0). Bioessays 2008; 30:1096-109. [PMID: 18937357 DOI: 10.1002/bies.20827] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adenosine triphosphate, ATP, is the energy currency of living cells. While ATP synthases of archae and ATP synthases of pro- and eukaryotic organisms operate as energy producers by synthesizing ATP, the eukaryotic V-ATPase hydrolyzes ATP and thus functions as energy transducer. These enzymes share features like the hydrophilic catalytic- and the membrane-embedded ion-translocating sector, allowing them to operate as nano-motors and to transform the transmembrane electrochemical ion gradient into ATP or vice versa. Since archaea are rooted close to the origin of life, the A-ATP synthase is probably more similar in its composition and function to the "original" enzyme, invented by Nature billion years ago. On the contrary, the V-ATPases have acquired specific structural, functional and regulatory features during evolution. This review will summarize the current knowledge on the structure, mechanism and regulation of A-ATP synthases and V-ATPases. The importance of V-ATPase in pathophysiology of diseases will be discussed.
Collapse
Affiliation(s)
- Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore.
| | | |
Collapse
|
17
|
Smith AN, Francis RW, Sorrell SL, Karet FE. The d subunit plays a central role in human vacuolar H(+)-ATPases. J Bioenerg Biomembr 2008; 40:371-80. [PMID: 18752060 PMCID: PMC2782108 DOI: 10.1007/s10863-008-9161-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 07/16/2008] [Indexed: 12/27/2022]
Abstract
The multi-subunit vacuolar-type H(+)-ATPase consists of a V(1) domain (A-H subunits) catalyzing ATP hydrolysis and a V(0) domain (a, c, c', c", d, e) responsible for H(+) translocation. The mammalian V(0) d subunit is one of the least-well characterized, and its function and position within the pump are still unclear. It has two different forms encoded by separate genes, d1 being ubiquitous while d2 is predominantly expressed at the cell surface in kidney and osteoclast. To determine whether it forms part of the pump's central stalk as suggested by bacterial A-ATPase studies, or is peripheral as hypothesized from a yeast model, we investigated both human d subunit isoforms. In silico structural modelling demonstrated that human d1 and d2 are structural orthologues of bacterial subunit C, despite poor sequence identity. Expression studies of d1 and d2 showed that each can pull down the central stalk's D and F subunits from human kidney membrane, and in vitro studies using D and F further showed that the interactions between these proteins and the d subunit is direct. These data indicate that the d subunit in man is centrally located within the pump and is thus important in its rotary mechanism.
Collapse
Affiliation(s)
- Annabel N. Smith
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Richard W. Francis
- Cambridge Institute for Medical Research, University of Cambridge, Box 139 Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY UK
| | - Sara L. Sorrell
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Fiona E. Karet
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, University of Cambridge, Box 139 Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY UK
- Division of Renal Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Abstract
Background The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts) and V-type (found in archaea, some bacteria, and eukaryotic vacuoles) ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments. Results We combine structural and phylogenetic analyses to clarify the evolutionary relation between the proton- and sodium-translocating ATPases. A comparison of the structures of the membrane-embedded oligomeric proteolipid rings of sodium-dependent F- and V-ATPases reveals nearly identical sets of amino acids involved in sodium binding. We show that the sodium-dependent ATPases are scattered among proton-dependent ATPases in both the F- and the V-branches of the phylogenetic tree. Conclusion Barring convergent emergence of the same set of ligands in several lineages, these findings indicate that the use of sodium gradient for ATP synthesis is the ancestral modality of membrane bioenergetics. Thus, a primitive, sodium-impermeable but proton-permeable cell membrane that harboured a set of sodium-transporting enzymes appears to have been the evolutionary predecessor of the more structurally demanding proton-tight membranes. The use of proton as the coupling ion appears to be a later innovation that emerged on several independent occasions. Reviewers This article was reviewed by J. Peter Gogarten, Martijn A. Huynen, and Igor B. Zhulin. For the full reviews, please go to the Reviewers' comments section.
Collapse
|