1
|
Jenkins C, Micallef ML, Padula MP, Bogema DR. Characterisation of the Theileria orientalis Piroplasm Proteome across Three Common Genotypes. Pathogens 2022; 11:pathogens11101135. [PMID: 36297192 PMCID: PMC9610513 DOI: 10.3390/pathogens11101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Theileria orientalis is an emerging apicomplexan pathogen of cattle occurring in areas populated by the principal vector tick, Haemaphysalis longicornis. Unlike transforming Theileria spp. that induce cancer-like proliferation of lymphocytes via their schizont stage, T. orientalis destroys host erythrocytes during its piroplasm phase resulting in anaemia. The underlying pathogenic processes of T. orientalis infection are poorly understood; consequently, there are no vaccines for prevention of T. orientalis infection and chemotherapeutic options are limited. To identify antigens expressed during the piroplasm phase of T. orientalis, including those which may be useful targets for future therapeutic development, we examined the proteome across three common genotypes of the parasite (Ikeda, Chitose and Buffeli) using preparations of piroplasms purified from bovine blood. A combination of Triton X-114 extraction, one-dimensional electrophoresis and LC-MS/MS identified a total of 1113 proteins across all genotypes, with less than 3% of these representing host-derived proteins. Just over three quarters of T. orientalis proteins (78%) identified were from the aqueous phase of the TX-114 extraction representing cytosolic proteins, with the remaining 22% from the detergent phase, representing membrane-associated proteins. All enzymes involved in glycolysis were expressed, suggesting that this is the major metabolic pathway used during the T. orientalis piroplasm phase. Proteins involved in binding and breakdown of haemoglobin were also identified, suggesting that T. orientalis uses haemoglobin as a source of amino acids. A number of proteins involved in host cell interaction were also identified which may be suitable targets for the development of chemotherapeutics or vaccines.
Collapse
Affiliation(s)
- Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
- Correspondence: ; Tel.: +61-2-4640-6396
| | - Melinda L. Micallef
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Matthew P. Padula
- School of Life Sciences, Faculty of Sciences, University of Technology, Sydney, NSW 2007, Australia
| | - Daniel R. Bogema
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| |
Collapse
|
2
|
Naguib FNM, Wilson CM, El Kouni MH. Enzymes of pyrimidine salvage pathways in intraerythrocytic Plasmodium falciparum. Int J Biochem Cell Biol 2018; 105:115-122. [PMID: 30381242 DOI: 10.1016/j.biocel.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 11/25/2022]
Abstract
Malaria remains a significant public health problem worldwide with an estimated annual global incidence of 200 million and an estimated 450,000 annual deaths. Among the five known human malarial species, Plasmodium falciparum is the deadliest and most resistant to antimalarials. Hence, there is a need for new antimalarial targets. The rational design of a drug is usually based on biochemical and physiological differences between pathogens and their hosts. In view of their high rate of replication, parasites require very active nucleic acid synthesis which necessitates large supplies of the indispensable pyrimidine nucleotides. Consequently, delineation of P. falciparum pyrimidine metabolic pathways may reveal potential targets for the chemotherapy of malaria. Previous studies reported the existence of pyrimidine de novo pathways in this organism. The present results demonstrate the presence of enzymes of the pyrimidine salvage pathways in P. falciparum and indicate that this parasite is capable of pyrimidine salvage. Furthermore, some of the pyrimidine salvage enzymes, e.g., dTMP kinase, phosphoribosyltransferase, and uridine phosphorylase could be excellent targets for chemotherapeutic intervention against this parasite.
Collapse
Affiliation(s)
- Fardos N M Naguib
- Department of Pharmacology and Toxicology, and Department of Epidemiology, Center for AIDS Research, Comprehensive Cancer Center, General Clinical Research Center, The University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Craig M Wilson
- Department of Pharmacology and Toxicology, and Department of Epidemiology, Center for AIDS Research, Comprehensive Cancer Center, General Clinical Research Center, The University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Mahmoud H El Kouni
- Department of Pharmacology and Toxicology, and Department of Epidemiology, Center for AIDS Research, Comprehensive Cancer Center, General Clinical Research Center, The University of Alabama at Birmingham, Birmingham, AL, 35294, United States.
| |
Collapse
|
3
|
Fox JM, Zhao M, Fink MJ, Kang K, Whitesides GM. The Molecular Origin of Enthalpy/Entropy Compensation in Biomolecular Recognition. Annu Rev Biophys 2018; 47:223-250. [DOI: 10.1146/annurev-biophys-070816-033743] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomolecular recognition can be stubborn; changes in the structures of associating molecules, or the environments in which they associate, often yield compensating changes in enthalpies and entropies of binding and no net change in affinities. This phenomenon—termed enthalpy/entropy (H/S) compensation—hinders efforts in biomolecular design, and its incidence—often a surprise to experimentalists—makes interactions between biomolecules difficult to predict. Although characterizing H/S compensation requires experimental care, it is unquestionably a real phenomenon that has, from an engineering perspective, useful physical origins. Studying H/S compensation can help illuminate the still-murky roles of water and dynamics in biomolecular recognition and self-assembly. This review summarizes known sources of H/ S compensation (real and perceived) and lays out a conceptual framework for understanding and dissecting—and, perhaps, avoiding or exploiting—this phenomenon in biophysical systems.
Collapse
Affiliation(s)
- Jerome M. Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - Mengxia Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Michael J. Fink
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
- The Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
4
|
Lima WR, Tessarin-Almeida G, Rozanski A, Parreira KS, Moraes MS, Martins DC, Hashimoto RF, Galante PAF, Garcia CRS. Signaling transcript profile of the asexual intraerythrocytic development cycle of Plasmodium falciparum induced by melatonin and cAMP. Genes Cancer 2016; 7:323-339. [PMID: 28050233 PMCID: PMC5115173 DOI: 10.18632/genesandcancer.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
According to the World Health Organization (WHO), Plasmodium falciparum is the deadliest parasite among all species. This parasite possesses the ability to sense molecules, including melatonin (MEL) and cAMP, and modulate its cell cycle accordingly. MEL synchronizes the development of this malaria parasite by activating several cascades, including the generation of the second messenger cAMP. Therefore, we performed RNA sequencing (RNA-Seq) analysis in P. falciparum erythrocytic stages (ring, trophozoite and schizont) treated with MEL and cAMP. To investigate the expression profile of P. falciparum genes regulated by MEL and cAMP, we performed RNA-Seq analysis in three P. falciparum strains (control, 3D7; protein kinase 7 knockout, PfPK7-; and PfPK7 complement, PfPK7C). In the 3D7 strain, 38 genes were differentially expressed upon MEL treatment; however, none of the genes in the trophozoite (T) stage PfPK7- knockout parasites were differentially expressed upon MEL treatment for 5 hours compared to untreated controls, suggesting that PfPK7 may be involved in the signaling leading to differential gene expression. Moreover, we found that MEL modified the mRNA expression of genes encoding membrane proteins, zinc ion-binding proteins and nucleic acid-binding proteins, which might influence numerous functions in the parasite. The RNA-Seq data following treatment with cAMP show that this molecule modulates different genes throughout the intraerythrocytic cycle, namely, 75, 101 and 141 genes, respectively, in the ring (R), T and schizont (S) stages. Our results highlight P. falciparum's perception of the external milieu through the signaling molecules MEL and cAMP, which are able to drive to changes in gene expression in the parasite.
Collapse
Affiliation(s)
- Wânia Rezende Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil.,Instituto de Ciências Exatas e Naturais (ICEN)- Medicina, Universidade Federal do Mato Grosso - Campus Rondonópolis, Brazil
| | | | - Andrei Rozanski
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Kleber S Parreira
- Departamento de Imunologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Brazil
| | - Miriam S Moraes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - David C Martins
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Ronaldo F Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Célia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
5
|
A novel viral thymidylate kinase with dual kinase activity. J Bioenerg Biomembr 2015; 47:431-40. [PMID: 26315341 DOI: 10.1007/s10863-015-9622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
Nucleotide phosphorylation is a key step in DNA replication and viral infections, since suitable levels of nucleotide triphosphates pool are required for this process. Deoxythymidine monophosphate (dTMP) is produced either by de novo or salvage pathways, which is further phosphorylated to deoxythymidine triphosphate (dTTP). Thymidyne monophosphate kinase (TMK) is the enzyme in the junction of both pathways, which phosphorylates dTMP to yield deoxythymidine diphosphate (dTDP) using adenosine triphosphate (ATP) as a phosphate donor. White spot syndrome virus (WSSV) genome contains an open reading frame (ORF454) that encodes a thymidine kinase and TMK domains in a single polypeptide. We overexpressed the TMK ORF454 domain (TMKwssv) and its specific activity was measured with dTMP and dTDP as phosphate acceptors. We found that TMKwssv can phosphorylate dTMP to yield dTDP and also is able to use dTDP as a substrate to produce dTTP. Kinetic parameters K M and k cat were calculated for dTMP (110 μM, 3.6 s(-1)), dTDP (251 μM, 0.9 s(-1)) and ATP (92 μM, 3.2 s(-1)) substrates, and TMKwssv showed a sequential ordered bi-bi reaction mechanism. The binding constants K d for dTMP (1.9 μM) and dTDP (10 μM) to TMKwssv were determined by Isothermal Titration Calorimetry. The affinity of the nucleotidic analog stavudine monophosphate was in the same order of magnitude (K d 3.6 μM) to the canonical substrate dTMP. These results suggest that nucleotide analogues such as stavudine could be a suitable antiviral strategy for the WSSV-associated disease.
Collapse
|
6
|
Kopylov M, Bass HW, Stroupe ME. The Maize (Zea mays L.) Nucleoside Diphosphate Kinase1 (ZmNDPK1) Gene Encodes a Human NM23-H2 Homologue That Binds and Stabilizes G-Quadruplex DNA. Biochemistry 2015; 54:1743-57. [DOI: 10.1021/bi501284g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mykhailo Kopylov
- Department of Biological Science and ‡Institute of
Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, Florida 32306-4380, United States
| | - Hank W. Bass
- Department of Biological Science and ‡Institute of
Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, Florida 32306-4380, United States
| | - M. Elizabeth Stroupe
- Department of Biological Science and ‡Institute of
Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, Florida 32306-4380, United States
| |
Collapse
|
7
|
Purification, characterization and structure of nucleoside diphosphate kinase from Drosophila melanogaster. Protein Expr Purif 2014; 103:48-55. [PMID: 25195176 DOI: 10.1016/j.pep.2014.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 12/13/2022]
Abstract
Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme found in all organisms and cell types, which catalyzes the transfer of the phosphoryl group from a nucleoside triphosphate to a nucleoside diphosphate. The gene encoding for NDPK from Drosophila melanogaster was amplified from the genomic DNA. The recombinant NDPK (rNDPK) was overexpressed in Escherichia coli and purified to homogeneity by Ni-NTA agarose affinity chromatography, HiTrap SP HP cation exchange chromatography and HiLoad 16/60 Superdex 200 gel filtration chromatography. The gel filtration chromatography and analytical ultracentrifugation showed that rNDPK was a trimer in solution. The binding affinity of NDPs with rNDPK, measured by isothermal titration calorimetry, indicated that the purines nucleotides show higher binding affinity compared with pyrimidines. The rNDPK had a definite nuclease activity in vitro, which could cleave supercoiled plasmid DNA, but had no effect on dsDNA and ssDNA. Furthermore, the structure for NDPK was determined by using the sitting drop vapor diffusion method. In the final model, the asymmetric unit is made of three molecules, each of which consists of a four-stranded anti-parallel β-sheets and seven α-helices. Sequence alignment and structure comparison illustrated that the simulated nucleotide-binding active site are conserved.
Collapse
|
8
|
Taher AA, Kandeel M, Kim HS, Kitade Y. Cleavage of DNA and Nuclease Properties of Plasmodium Nucleoside Diphosphate Kinase. INT J PHARMACOL 2014. [DOI: 10.3923/ijp.2014.334.339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Kandeel M, Al-Taher A, Nakashima R, Sakaguchi T, Kandeel A, Nagaya Y, Kitamura Y, Kitade Y. Bioenergetics and gene silencing approaches for unraveling nucleotide recognition by the human EIF2C2/Ago2 PAZ domain. PLoS One 2014; 9:e94538. [PMID: 24788663 PMCID: PMC4008379 DOI: 10.1371/journal.pone.0094538] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 03/18/2014] [Indexed: 12/27/2022] Open
Abstract
Gene silencing and RNA interference are major cellular processes that control gene expression via the cleavage of target mRNA. Eukaryotic translation initiation factor 2C2 (EIF2C2, Argonaute protein 2, Ago2) is considered to be the major player of RNAi as it is the core component of RISC complexes. While a considerable amount of research has focused on RNA interference and its associated mechanisms, the nature and mechanisms of nucleotide recognition by the PAZ domain of EIF2C2/Ago2 have not yet been characterized. Here, we demonstrate that the EIF2C2/Ago2 PAZ domain has an inherent lack of binding to adenine nucleotides, a feature that highlights the poor binding of 3′-adenylated RNAs with the PAZ domain as well as the selective high trimming of the 3′-ends of miRNA containing adenine nucleotides. We further show that the PAZ domain selectively binds all ribonucleotides (except adenosine), whereas it poorly recognizes deoxyribonucleotides. In this context, the modification of dTMP to its ribonucleotide analogue gave a drastic improvement of binding enthalpy and, hence, binding affinity. Additionally, higher in vivo gene silencing efficacy was correlated with the stronger PAZ domain binders. These findings provide new insights into the nature of the interactions of the EIF2C2/Ago2 PAZ domain.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine and Animal Resources, King Faisal University, Alhofuf, Alahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Abdullah Al-Taher
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine and Animal Resources, King Faisal University, Alhofuf, Alahsa, Saudi Arabia
| | - Remi Nakashima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Tomoya Sakaguchi
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Ali Kandeel
- Department of Biology, Faculty of Sciences and Arts, Alkamil Branch, King Abdul Aziz University, Alkamil, Saudi Arabia
- Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yuki Nagaya
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Yoshiaki Kitamura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yukio Kitade
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
- * E-mail:
| |
Collapse
|
10
|
Kandeel M, Elgazar W, Kitade Y. The Binding Interactions of the Macrolide Endectocide Ivermectin with the Antibiotics Ampicillin, Chloramphenicol and Tetracycline HCL. Indian J Pharm Sci 2013; 74:592-6. [PMID: 23798790 PMCID: PMC3687934 DOI: 10.4103/0250-474x.110635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/11/2012] [Accepted: 12/22/2012] [Indexed: 12/26/2022] Open
Abstract
Ivermectin, chloramphenicol, ampicillin and tetracycline HCl are common drugs in human and veterinary practice. The purpose of this study is to investigate the possible binding interactions between ivermectin and the antibiotics chloramphenicol, ampicillin and tetracycline HCl. Isothermal titration calorimetry was used to determine the binding interactions between ivermectin and these antibiotics. Results indicated that, about three molecules of ampicillin can bind to one molecule of ivermectin and about one molecule of chloramphenicol with one molecule of ivermectin. However, no binding stoichiometry can be detected with tetracycline HCl-ivermectin titration. Furthermore, the binding interactions were accompanied by various biophysical and biochemical mechanisms. This is the first report of such interactions of ivermectin with chloramphenicol, ampicillin and tetracycline HCl. There are possible binding interactions of ivermectin with chloramphenicol and ampicillin. Further studies are required for detecting the impact of this binding on biological aspects of drug actions.
Collapse
Affiliation(s)
- M Kandeel
- United Graduate School of Drug Discovery and Medical Information Sciences,Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| | | | | |
Collapse
|
11
|
Abstract
Malaria, the disease caused by infection with protozoan parasites from the genus Plasmodium, claims the lives of nearly 1 million people annually. Developing nations, particularly in the African Region, bear the brunt of this malaria burden. Alarmingly, the most dangerous etiologic agent of malaria, Plasmodium falciparum, is becoming increasingly resistant to current first-line antimalarials. In light of the widespread devastation caused by malaria, the emergence of drug-resistant P. falciparum strains, and the projected decrease in funding for malaria eradication that may occur over the next decade, the identification of promising new targets for antimalarial drug design is imperative. P. falciparum kinases have been proposed as ideal drug targets for antimalarial drug design because they mediate critical cellular processes within the parasite and are, in many cases, structurally and mechanistically divergent when compared with kinases from humans. Identifying a molecule capable of inhibiting the activity of a target enzyme is generally an arduous and expensive process that can be greatly aided by utilizing in silico drug design techniques. Such methods have been extensively applied to human kinases, but as yet have not been fully exploited for the exploration and characterization of antimalarial kinase targets. This review focuses on in silico methods that have been used for the evaluation of potential antimalarials and the Plasmodium kinases that could be explored using these techniques.
Collapse
|
12
|
Quintero-Reyes IE, Garcia-Orozco KD, Sugich-Miranda R, Arvizu-Flores AA, Velazquez-Contreras EF, Castillo-Yañez FJ, Sotelo-Mundo RR. Shrimp oncoprotein nm23 is a functional nucleoside diphosphate kinase. J Bioenerg Biomembr 2012; 44:325-31. [PMID: 22528393 DOI: 10.1007/s10863-012-9436-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/19/2012] [Indexed: 11/27/2022]
Abstract
Biosynthesis of nucleoside triphosphates is critical for bioenergetics and nucleic acid replication, and this is achieved by nucleoside diphosphate kinase (NDK). As an emerging biological model and the global importance of shrimp culture, we have addressed the study of the Pacific whiteleg shrimp (Litopenaeus vannamei) NDK. We demonstrated its activity and affinity towards deoxynucleoside diphosphates. Also, the quaternary structure obtained by gel filtration chromatography showed that shrimp NDK is a trimer. Affinity was in the micro-molar range for dADP, dGDP, dTDP and except for dCDP, which presented no detectable interaction by isothermal titration calorimetry, as described previously for Plasmodium falciparum NDK. This information is particularly important, as this enzyme could be used to test nucleotide analogs that can block white spot syndrome virus (WSSV) viral replication and to study its bioenergetics role during hypoxia and fasting.
Collapse
Affiliation(s)
- Idania E Quintero-Reyes
- Aquatic Molecular Biology Lab, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a Ejido la Victoria Km 0.6, Hermosillo, Sonora 83304, Mexico
| | | | | | | | | | | | | |
Collapse
|
13
|
Ghai R, Falconer RJ, Collins BM. Applications of isothermal titration calorimetry in pure and applied research--survey of the literature from 2010. J Mol Recognit 2012; 25:32-52. [PMID: 22213449 DOI: 10.1002/jmr.1167] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isothermal titration calorimetry (ITC) is a biophysical technique for measuring the formation and dissociation of molecular complexes and has become an invaluable tool in many branches of science from cell biology to food chemistry. By measuring the heat absorbed or released during bond formation, ITC provides accurate, rapid, and label-free measurement of the thermodynamics of molecular interactions. In this review, we survey the recent literature reporting the use of ITC and have highlighted a number of interesting studies that provide a flavour of the diverse systems to which ITC can be applied. These include measurements of protein-protein and protein-membrane interactions required for macromolecular assembly, analysis of enzyme kinetics, experimental validation of molecular dynamics simulations, and even in manufacturing applications such as food science. Some highlights include studies of the biological complex formed by Staphylococcus aureus enterotoxin C3 and the murine T-cell receptor, the mechanism of membrane association of the Parkinson's disease-associated protein α-synuclein, and the role of non-specific tannin-protein interactions in the quality of different beverages. Recent developments in automation are overcoming limitations on throughput imposed by previous manual procedures and promise to greatly extend usefulness of ITC in the future. We also attempt to impart some practical advice for getting the most out of ITC data for those researchers less familiar with the method.
Collapse
Affiliation(s)
- Rajesh Ghai
- Institute for Molecular Bioscience (IMB), University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | |
Collapse
|