1
|
Korotkov SM. Mitochondrial Oxidative Stress Is the General Reason for Apoptosis Induced by Different-Valence Heavy Metals in Cells and Mitochondria. Int J Mol Sci 2023; 24:14459. [PMID: 37833908 PMCID: PMC10572412 DOI: 10.3390/ijms241914459] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
This review analyzes the causes and consequences of apoptosis resulting from oxidative stress that occurs in mitochondria and cells exposed to the toxic effects of different-valence heavy metals (Ag+, Tl+, Hg2+, Cd2+, Pb2+, Al3+, Ga3+, In3+, As3+, Sb3+, Cr6+, and U6+). The problems of the relationship between the integration of these toxic metals into molecular mechanisms with the subsequent development of pathophysiological processes and the appearance of diseases caused by the accumulation of these metals in the body are also addressed in this review. Such apoptosis is characterized by a reduction in cell viability, the activation of caspase-3 and caspase-9, the expression of pro-apoptotic genes (Bax and Bcl-2), and the activation of protein kinases (ERK, JNK, p53, and p38) by mitogens. Moreover, the oxidative stress manifests as the mitochondrial permeability transition pore (MPTP) opening, mitochondrial swelling, an increase in the production of reactive oxygen species (ROS) and H2O2, lipid peroxidation, cytochrome c release, a decline in the inner mitochondrial membrane potential (ΔΨmito), a decrease in ATP synthesis, and reduced glutathione and oxygen consumption as well as cytoplasm and matrix calcium overload due to Ca2+ release from the endoplasmic reticulum (ER). The apoptosis and respiratory dysfunction induced by these metals are discussed regarding their interaction with cellular and mitochondrial thiol groups and Fe2+ metabolism disturbance. Similarities and differences in the toxic effects of Tl+ from those of other heavy metals under review are discussed. Similarities may be due to the increase in the cytoplasmic calcium concentration induced by Tl+ and these metals. One difference discussed is the failure to decrease Tl+ toxicity through metallothionein-dependent mechanisms. Another difference could be the decrease in reduced glutathione in the matrix due to the reversible oxidation of Tl+ to Tl3+ near the centers of ROS generation in the respiratory chain. The latter may explain why thallium toxicity to humans turned out to be higher than the toxicity of mercury, lead, cadmium, copper, and zinc.
Collapse
Affiliation(s)
- Sergey M Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russia
| |
Collapse
|
2
|
Korotkov SM, Novozhilov AV. A Comparative Study on the Effects of the Lysine Reagent Pyridoxal 5-Phosphate and Some Thiol Reagents in Opening the Tl +-Induced Mitochondrial Permeability Transition Pore. Int J Mol Sci 2023; 24:ijms24032460. [PMID: 36768782 PMCID: PMC9916919 DOI: 10.3390/ijms24032460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Lysine residues are essential in regulating enzymatic activity and the spatial structure maintenance of mitochondrial proteins and functional complexes. The most important parts of the mitochondrial permeability transition pore are F1F0 ATPase, the adenine nucleotide translocase (ANT), and the inorganic phosphate cotransporter. The ANT conformation play a significant role in the Tl+-induced MPTP opening in the inner membrane of calcium-loaded rat liver mitochondria. The present study tests the effects of a lysine reagent, pyridoxal 5-phosphate (PLP), and thiol reagents (phenylarsine oxide, tert-butylhydroperoxide, eosin-5-maleimide, and mersalyl) to induce the MPTP opening that was accompanied by increased swelling, membrane potential decline, and decreased respiration in 3 and 3UDNP (2,4-dinitrophenol uncoupled) states. This pore opening was more noticeable in increasing the concentration of PLP and thiol reagents. However, more significant concentrations of PLP were required to induce the above effects comparable to those of these thiol reagents. This study suggests that the Tl+-induced MPTP opening can be associated not only with the state of functionally active cysteines of the pore parts, but may be due to a change in the state of the corresponding lysines forming the pore structure.
Collapse
|
3
|
The Joint Influence of Tl+ and Thiol-Modifying Agents on Rat Liver Mitochondrial Parameters In Vitro. Int J Mol Sci 2022; 23:ijms23168964. [PMID: 36012228 PMCID: PMC9409397 DOI: 10.3390/ijms23168964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Recent data have shown that the mitochondrial permeability transition pore (MPTP) is the complex of the Ca2+-modified adenine nucleotide translocase (ANT) and the Ca2+-modified ATP synthase. We found in a previous study that ANT conformational changes may be involved in Tl+-induced MPTP opening in the inner membrane of Ca2+-loaded rat liver mitochondria. In this study, the effects of thiol-modifying agents (eosin-5-maleimide (EMA), fluorescein isothiocyanate (FITC), Cu(o-phenanthroline)2 (Cu(OP)2), and embelin (Emb)), and MPTP inhibitors (ADP, cyclosporine A (CsA), n-ethylmaleimide (NEM), and trifluoperazine (TFP)) on MPTP opening were tested simultaneously with increases in swelling, membrane potential (ΔΨmito) decline, decreases in state 3, 4, and 3UDNP (2,4-dinitrophenol-uncoupled) respiration, and changes in the inner membrane free thiol group content. The effects of these thiol-modifying agents on the studied mitochondrial characteristics were multidirectional and showed a clear dependence on their concentration. This research suggests that Tl+-induced MPTP opening in the inner membrane of calcium-loaded mitochondria may be caused by the interaction of used reagents (EMA, FITC, Emb, Cu(OP)2) with active groups of ANT, the mitochondrial phosphate carrier (PiC) and the mitochondrial respiratory chain complexes. This study provides further insight into the causes of thallium toxicity and may be useful in the development of new treatments for thallium poisoning.
Collapse
|
4
|
Korotkov SM. Effects of Tl + on the inner membrane thiol groups, respiration, and swelling in succinate-energized rat liver mitochondria were modified by thiol reagents. Biometals 2021; 34:987-1006. [PMID: 34236558 DOI: 10.1007/s10534-021-00329-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022]
Abstract
The effects of both Tl+ and thiol reagents were studied on the content of the inner membrane free SH-groups, detected with Ellman reagent, and the inner membrane potential as well as swelling and respiration of succinate-energized rat liver mitochondria in medium containing TlNO3 and KNO3. These effects resulted in a rise in swelling and a decrease in the content, the potential, and mitochondrial respiration in 3 and 2,4-dinitrophenol-uncoupled states. A maximal effect was seen when phenylarsine oxide reacting with thiol groups recessed into the hydrophobic regions of the membrane. Compared with phenylarsine oxide, the effective concentrations of other reagents were approximately one order of magnitude higher in experiments with mersalyl and 4,4'-diisothiocyanostilbene-2,2'-disulfonate, and two orders of magnitude higher in experiments with tert-butyl hydroperoxide and diamide. The above effects of Tl+ and the thiol reagents became even more pronounced with calcium overload of mitochondria. However, the effects were suppressed by inhibitors of the mitochondrial permeability transition pore (cyclosporine A, ADP, and n-ethylmaleimide). These findings suggest that opening of the pore induced by Tl+ in the inner membrane can be dependent on the conformation state of the adenine nucleotide translocase, which depends on the activity of its thiol groups.
Collapse
Affiliation(s)
- Sergey M Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, St. Petersburg, Russian Federation, 194223.
| |
Collapse
|
5
|
Korotkov SM, Sobol KV, Schemarova IV, Novozhilov AV, Nikitina ER, Nesterov VP. Effects of Gd3+ and Ca2+ on Frog Heart Muscle Contractility and Respiration, Swelling and Inner Membrane Potential of Rat Heart Mitochondria. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020060071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Korotkov SM, Nesterov VP, Belostotskaya GB, Brailovskaya IV, Novozhilov AV, Sobol CV. Influence of Tl(+) on the Ca(2+) and Na(+) movement across rat neonatal cardiomyocytes and rat heart mitochondria membranes. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Korotkov SM, Nesterov VP, Sobol KV. The Effects of Thallium on the Spontaneous Contraction of the Heart Muscle and the Energetic Processes in Cardiomyocyte Mitochondria. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919050117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Fan XY, Liu YJ, Cai YM, Wang AD, Xia YZ, Hu YJ, Jiang FL, Liu Y. A mitochondria-targeted organic arsenical accelerates mitochondrial metabolic disorder and function injury. Bioorg Med Chem 2019; 27:760-768. [PMID: 30665675 DOI: 10.1016/j.bmc.2019.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/31/2018] [Accepted: 01/14/2019] [Indexed: 12/26/2022]
Abstract
Considering the vital role of mitochondria in the anti-cancer mechanism of organic arsenical, the mitochondria-targeted precursor PDT-PAO-TPP was designed and synthesized. PDT-PAO-TPP, as a delocalization lipophilic cation (DLCs) which mainly accumulated in mitochondria, contributed to improve anti-cancer efficacy and selectivity towards NB4 cells. In detail, PDT-PAO-TPP inhibited the activity of PDHC resulting in the suppression of ATP synthesis and thermogenesis disorder. Additionally, the inhibition of respiratory chain complex I and IV by short-time incubation of PDT-PAO-TPP also accelerated the respiration dysfunction and continuous generation of ROS. These results led to the release of cytochrome c and activation of caspase family-dependent apoptosis. Different from the mechanism of PDT-PAO in HL-60 cells, it mainly induced the mitochondrial metabolic disturbance resulting in the intrinsic apoptosis via inhibiting the activity of PDHC in NB4 cells, which also implied that the efficacy exertion of organic arsenical was a complex process involved in many aspects of cellular function. This study systematically clarifies the anti-cancer mechanism of mitochondria-targeted organic arsenical PDT-PAO-TPP and confirms the new target PDHC of organic arsenicals, which further supports the organic arsenical as a promising anticancer drug.
Collapse
Affiliation(s)
- Xiao-Yang Fan
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yu-Jiao Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yu-Meng Cai
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - An-Dong Wang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yin-Zheng Xia
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yan-Jun Hu
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China; Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
9
|
Ilyich T, Charishnikova O, Sekowski S, Zamaraeva M, Cheshchevik V, Dremza I, Cheshchevik N, Kiryukhina L, Lapshina E, Zavodnik I. Ferutinin Induces Membrane Depolarization, Permeability Transition Pore Formation, and Respiration Uncoupling in Isolated Rat Liver Mitochondria by Stimulation of Ca 2+-Permeability. J Membr Biol 2018; 251:563-572. [PMID: 29594529 DOI: 10.1007/s00232-018-0032-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/24/2018] [Indexed: 01/17/2023]
Abstract
It is well known that the terpenoid ferutinin (4-oxy-6-(4-oxybenzoyloxy) dauc-8,9-en), isolated from the plant Ferula tenuisecta, considerably increases the permeability of artificial and cellular membranes to Ca2+-ions and produces apoptotic cell death in different cell lines in a mitochondria-dependent manner. The present study was designed for further evaluation of the mechanism(s) of mitochondrial effects of ferutinin using isolated rat liver mitochondria. Our findings provide evidence for ferutinin at concentrations of 5-27 µM to decrease state 3 respiration and the acceptor control ratio in the case of glutamate/malate as substrates. Ferutinin alone (10-60 µM) also dose-dependently dissipated membrane potential. In the presence of Ca2+-ions, ferutinin (10-60 µM) induced considerable depolarization of the inner mitochondrial membrane, which was partially inhibited by EGTA, and permeability transition pore formation, which was diminished partly by cyclosporin A, and did not influence markedly the effect of Ca2+ on mitochondrial respiration. Ruthenium Red, a specific inhibitor of mitochondrial calcium uniporter, completely inhibited Ca2+-induced mitochondria swelling and membrane depolarization, but did not affect markedly the stimulation of these Ca2+-dependent processes by ferutinin. We concluded that the mitochondrial effects of ferutinin might be primarily induced by stimulation of mitochondrial membrane Ca2+-permeability, but other mechanisms, such as driving of univalent cations, might be involved.
Collapse
Affiliation(s)
- Tatsiana Ilyich
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Oksana Charishnikova
- National University of Uzbekistan named after Mirzo Ulugbek, Vuzgorodok, 700174, Tashkent, Uzbekistan
| | - Szymon Sekowski
- Department of Biophysics, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Maria Zamaraeva
- Department of Biophysics, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Vitali Cheshchevik
- Department of Biotechnology, Polessky State University, Dnieprovskoy Flotilii, 23, 225710, Pinsk, Brest Region, Belarus
| | - Iosif Dremza
- Department of Pathophysiology, State Medical University of Grodno, Gorkogo, 80, 230015, Grodno, Belarus
| | - Nina Cheshchevik
- Department of Biotechnology, Polessky State University, Dnieprovskoy Flotilii, 23, 225710, Pinsk, Brest Region, Belarus
| | - Lyudmila Kiryukhina
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Elena Lapshina
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus
| | - Ilya Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Blvd. Len. Kom. - 50, 230030, Grodno, Belarus.
| |
Collapse
|
10
|
Korotkov SM, Konovalova SA, Nesterov VP, Brailovskaya IV. Mersalyl prevents the Tl +-induced permeability transition pore opening in the inner membrane of Ca 2+-loaded rat liver mitochondria. Biochem Biophys Res Commun 2017; 495:1716-1721. [PMID: 29223393 DOI: 10.1016/j.bbrc.2017.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022]
Abstract
It was earlier shown that the calcium load of rat liver mitochondria in medium containing TlNO3 and KNO3 resulted in the Tl+-induced mitochondrial permeability transition pore (MPTP) opening in the inner membrane. This opening was accompanied by an increase in swelling and membrane potential dissipation and a decrease in state 3, state 4, and 2,4-dinitrophenol-uncoupled respiration. This respiratory decrease was markedly leveled by mersalyl (MSL), the phosphate symporter (PiC) inhibitor which poorly stimulated the calcium-induced swelling, but further increased the potential dissipation. All of these effects of Ca2+ and MSL were visibly reduced in the presence of the MPTP inhibitors (ADP, N-ethylmaleimide, and cyclosporine A). High MSL concentrations attenuated the ability of ADP to inhibit the MPTP. Our data suggest that the PiC can participate in the Tl+-induced MPTP opening in the inner membrane of Ca2+-loaded rat liver mitochondria.
Collapse
Affiliation(s)
- Sergey M Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russia.
| | - Svetlana A Konovalova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russia
| | - Vladimir P Nesterov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russia
| | - Irina V Brailovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russia
| |
Collapse
|
11
|
Kon N, Satoh A, Miyoshi N. A small-molecule DS44170716 inhibits Ca 2+-induced mitochondrial permeability transition. Sci Rep 2017. [PMID: 28634393 PMCID: PMC5478606 DOI: 10.1038/s41598-017-03651-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are involved in a variety of physiological and pathological processes. Ca2+ uptake is one of the important functions of the organelle for maintenance of cellular Ca2+ homeostasis. In pathological conditions such as ischemia reperfusion injury, Ca2+ overload into mitochondria induces mitochondrial permeability transition (MPT), a critical step for cell death. Because inhibition of MPT is a promising approach to protecting cells and organs, it is important for drug discovery to identify novel chemicals or mechanisms to inhibit MPT. Here we report upon a small-molecule compound DS44170716 that inhibits Ca2+-induced MPT in rat liver isolated mitochondria. DS44170716 protects human liver HepG2 cells from Ca2+-induced death with a level of protection similar to cyclosporin A (CsA). The inhibitory mechanism of DS44170716 against MPT is independent on PPIF, a target of CsA. DS44170716 blocks Ca2+ flux into the mitochondria by decreasing mitochondrial membrane potential, while potently inhibiting mitochondrial complex III activities and weakly inhibiting complex IV and V activities. Similarly, complex III inhibitor antimycin A, complex IV inhibitor KCN or complex V inhibitor oligomycin inhibits Ca2+ uptake of isolated mitochondria. These results show that DS44170716 is a novel class inhibitor of MPT by blocking of mitochondrial complexes and Ca2+-overload into mitochondria.
Collapse
Affiliation(s)
- Naohiro Kon
- Medical Science Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan.
| | - Atsushi Satoh
- Manufacturing Department III, Kitasato Daiichi Sankyo Vaccine Co., Ltd., Saitama, Japan
| | - Naoki Miyoshi
- End-Organ Disease Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
12
|
Sobol CV, Nesterov VP, Belostotskaya GB, Korotkov SM. The effects of Tl+ ions on the dynamics of intracellular Ca2+ in rat cardiomyocytes. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917010201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Dong P, Li JH, Xu SP, Wu XJ, Xiang X, Yang QQ, Jin JC, Liu Y, Jiang FL. Mitochondrial dysfunction induced by ultra-small silver nanoclusters with a distinct toxic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2016; 308:139-148. [PMID: 26808252 DOI: 10.1016/j.jhazmat.2016.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/30/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
As noble metal nanoclusters (NCs) are widely employed in nanotechnology, their potential threats to human and environment are relatively less understood. Herein, the biological effects of ultra-small silver NCs coated by bovine serum albumin (BSA) (Ag-BSA NCs) on isolated rat liver mitochondria were investigated by testing mitochondrial swelling, membrane permeability, ROS generation, lipid peroxidation and respiration. It was found that Ag-BSA NCs induced mitochondrial dysfunction via synergistic effects of two different ways: (1) inducing mitochondrial membrane permeability transition (MPT) by interacting with the phospholipid bilayer of the mitochondrial membrane (not with specific MPT pore proteins); (2) damaging mitochondrial respiration by the generation of reactive oxygen species (ROS). As far as we know, this is the first report on the biological effects of ultra-small size nanoparticles (∼2 nm) at the sub-cellular level, which provides significant insights into the potential risks brought by the applications of NCs. It would inspire us to evaluate the potential threats of nanomaterials more comprehensively, even though they showed no obvious toxicity to cells or in vivo animal models. Noteworthy, a distinct toxic mechanism to mitochondria caused by Ag-BSA NCs was proposed and elucidated.
Collapse
Affiliation(s)
- Ping Dong
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jia-Han Li
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Shi-Ping Xu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Juan Wu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xun Xiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Qi-Qi Yang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jian-Cheng Jin
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, PR China.
| |
Collapse
|
14
|
To involvement the conformation of the adenine nucleotide translocase in opening the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria. Toxicol In Vitro 2016; 32:320-32. [PMID: 26835787 DOI: 10.1016/j.tiv.2016.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 01/05/2016] [Accepted: 01/29/2016] [Indexed: 12/30/2022]
Abstract
The conformation of adenine nucleotide translocase (ANT) has a profound impact in opening the mitochondrial permeability transition pore (MPTP) in the inner membrane. Fixing the ANT in 'c' conformation by phenylarsine oxide (PAO), tert-butylhydroperoxide (tBHP), and carboxyatractyloside as well as the interaction of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) with mitochondrial thiols markedly attenuated the ability of ADP to inhibit the MPTP opening. We earlier found (Korotkov and Saris, 2011) that calcium load of rat liver mitochondria in medium containing TlNO3 and KNO3 stimulated the Tl(+)-induced MPTP opening in the inner mitochondrial membrane. The MPTP opening as well as followed increase in swelling, a drop in membrane potential (ΔΨmito), and a decrease in state 3, state 4, and 2,4-dinitrophenol-uncoupled respiration were visibly enhanced in the presence of PAO, tBHP, DIDS, and carboxyatractyloside. However, these effects were markedly inhibited by ADP and membrane-penetrant hydrophobic thiol reagent, N-ethylmaleimide (NEM) which fix the ANT in 'm' conformation. Cyclosporine A additionally potentiated these effects of ADP and NEM. Our data suggest that conformational changes of the ANT may be directly involved in the opening of the Tl(+)-induced MPTP in the inner membrane of Ca(2+)-loaded rat liver mitochondria. Using the Tl(+)-induced MPTP model is discussed in terms finding new transition pore inhibitors and inducers among different chemical and natural compounds.
Collapse
|
15
|
Korotkov SM, Konovalova SA, Brailovskaya IV. Diamide accelerates opening of the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria. Biochem Biophys Res Commun 2015; 468:360-4. [PMID: 26518646 DOI: 10.1016/j.bbrc.2015.10.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022]
Abstract
Opening of the mitochondrial permeability transition pore (MPTP) in the inner membrane is due to matrix Ca(2+) overload and matrix glutathione loss. Fixing the 'm' conformation of the adenine nucleotide translocase (ANT) by ADP or N-ethylmaleimide (NEM) inhibits opening of the MPTP. Oxidants (diamide or tert-butylhydroperoxide (tBHP)) fix the ANT in 'c' conformation, and the ability of ADP to inhibit the MPTP is thus attenuated. Earlier we found (Korotkov and Saris, 2011) that calcium load of rat liver mitochondria resulted in Tl(+)-induced MPTP opening, which was accompanied by a decrease in state 3, state 4, and 2,4-dinitrophenol-uncoupled respiration, as well as increased swelling and membrane potential dissipation. These effects, which were increased by diamide and tBHP, were visibly reduced in the presence of the MPTP inhibitors (ADP, NEM, and cyclosporine A). Our data suggest that conformational changes of the ANT and matrix glutathione loss may be directly involved in opening the Tl(+)-induced MPTP in the inner membrane of Ca(2+)-loaded rat liver mitochondria.
Collapse
Affiliation(s)
- Sergey M Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russia.
| | - Svetlana A Konovalova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russia
| | - Irina V Brailovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russia
| |
Collapse
|
16
|
Korotkov SM, Emelyanova LV, Konovalova SA, Brailovskaya IV. Tl+ induces the permeability transition pore in Ca2+-loaded rat liver mitochondria energized by glutamate and malate. Toxicol In Vitro 2015; 29:1034-41. [PMID: 25910914 DOI: 10.1016/j.tiv.2015.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 04/04/2015] [Accepted: 04/08/2015] [Indexed: 12/14/2022]
Abstract
It is known that Ca2+ and heavy metals more actively induce MPTP opening in mitochondria, energized by the I complex substrates. Thus, a rise in a Tl+-induced MPTP was proposed in experiments on isolated rat liver mitochondria energized by the complex I substrate (glutamate and malate). Expose of the mitochondria to Ca2+ into a medium containing TlNO3, glutamate, and malate as well as sucrose or KNO3 resulted in a decrease in state 3, state 4, or DNP-stimulated respiration as well as an increase of both mitochondrial swelling and ΔΨmito dissipation. The MPTP inhibitors, CsA and ADP, almost completely eliminated the effect of Ca2+, which was more pronounced in the presence of the complex I substrates than the complex II substrate (succinate) and rotenone (Korotkov and Saris, 2011). The present study concludes that Tl+-induced MPTP opening is more appreciable in mitochondria energized by glutamate and malate but not succinate in the presence of rotenone. We assume that the Tl+-induced MPTP opening along with followed swelling and possible structural deformations of the complex I in Ca2+-loaded mitochondria may be a part of the thallium toxicity mechanism on mitochondria in living organisms. At the same time, oxidation of Tl+ to Tl3+ by mitochondrial oxygen reactive species is proposed for the mechanism.
Collapse
Affiliation(s)
- Sergey M Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223 St., Petersburg, Russian Federation.
| | - Larisa V Emelyanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223 St., Petersburg, Russian Federation
| | - Svetlana A Konovalova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223 St., Petersburg, Russian Federation
| | - Irina V Brailovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223 St., Petersburg, Russian Federation
| |
Collapse
|
17
|
Closure of mitochondrial potassium channels favors opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria. J Bioenerg Biomembr 2015; 47:243-54. [DOI: 10.1007/s10863-015-9611-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/30/2015] [Indexed: 12/23/2022]
|
18
|
Korotkov S, Konovalova S, Emelyanova L, Brailovskaya I. Y3+, La3+, and some bivalent metals inhibited the opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria. J Inorg Biochem 2014; 141:1-9. [PMID: 25172992 DOI: 10.1016/j.jinorgbio.2014.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022]
Abstract
We showed earlier that diminution of 2,4-dinitrophenol (DNP)-stimulated respiration and increase of both mitochondrial swelling and electrochemical potential (ΔΨmito) dissipation in medium containing TlNO3 and KNO3 were caused by opening of Tl(+)-induced mitochondrial permeability transition pore (MPTP) in the inner membrane of Ca(2+)-loaded rat liver mitochondria. The MPTP opening was studied in the presence of bivalent metal ions (Sr(2+), Ba(2+), Mn(2+), Co(2+) and Ni(2+)), trivalent metal ions (Y(3+) and La(3+)), and ruthenium red. We found that these metal ions (except Ba(2+) and Co(2+)) as well as ruthenium red inhibited to the MPTP opening that manifested in preventing both diminution of the DNP-stimulated respiration and increase of the swelling and of the ΔΨmito dissipation in medium containing TlNO3, KNO3, and Ca(2+). Inhibition of the MPTP opening by Sr(2+) and Mn(2+) is suggested because of their interaction with high affinity Ca(2+) sites, facing the matrix side and participating in the MPTP opening. The inhibitory effects of metal ions (Y(3+), La(3+), and Ni(2+)), and ruthenium red are accordingly discussed in regard to competitive and noncompetitive inhibition of the mitochondrial Ca(2+)-uniporter. High concentrations (50μM) of Y(3+) and La(3+) favored of MPTP opening in the inner membrane of rat liver mitochondria in Ca(2+) free medium containing TlNO3. The latter MPTP opening was markedly eliminated by MPTP inhibitors (cyclosporine A and ADP).
Collapse
Affiliation(s)
- Sergey Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russian Federation.
| | - Svetlana Konovalova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russian Federation
| | - Larisa Emelyanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russian Federation
| | - Irina Brailovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russian Federation
| |
Collapse
|
19
|
Korotkov SM, Brailovskaya IV, Kormilitsyn BN, Furaev VV. Tl(+) showed negligible interaction with inner membrane sulfhydryl groups of rat liver mitochondria, but formed complexes with matrix proteins. J Biochem Mol Toxicol 2014; 28:149-56. [PMID: 24436107 DOI: 10.1002/jbt.21547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/04/2013] [Accepted: 12/15/2013] [Indexed: 12/31/2022]
Abstract
The effects of Tl(+) on protein sulfhydryl (SH) groups, swelling, and respiration of rat liver mitochondria (RLM) were studied in a medium containing TlNO3 and sucrose, or TlNO3 and KNO3 as well as glutamate plus malate, or succinate plus rotenone. Detected with Ellman's reagent, an increase in the content of the SH groups was found in the inner membrane fraction, and a simultaneous decline was found in the content of the matrix-soluble fraction for RLM, incubated and frozen in 25-75 mM TlNO3 . This increase was greater in the medium containing KNO3 regardless of the presence of Ca(2+) . It was eliminated completely for RLM injected in the medium containing TlNO3 and then washed and frozen in the medium containing KNO3 . Calcium-loaded RLM showed increased swelling and decreased respiration. These results suggest that a ligand interaction of Tl(+) with protein SH groups, regardless of the presence of calcium, may underlie the mechanism of thallium toxicity.
Collapse
Affiliation(s)
- Sergey M Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Thorez pr. 44, 194223, St. Petersburg, Russia.
| | | | | | | |
Collapse
|
20
|
Korotkov SM, Nesterov VP, Brailovskaya IV, Furaev VV, Novozhilov AV. Tl+ induces both cationic and transition pore permeability in the inner membrane of rat heart mitochondria. J Bioenerg Biomembr 2013; 45:531-9. [DOI: 10.1007/s10863-013-9526-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
|