1
|
Korotkov SM. Mitochondrial Oxidative Stress Is the General Reason for Apoptosis Induced by Different-Valence Heavy Metals in Cells and Mitochondria. Int J Mol Sci 2023; 24:14459. [PMID: 37833908 PMCID: PMC10572412 DOI: 10.3390/ijms241914459] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
This review analyzes the causes and consequences of apoptosis resulting from oxidative stress that occurs in mitochondria and cells exposed to the toxic effects of different-valence heavy metals (Ag+, Tl+, Hg2+, Cd2+, Pb2+, Al3+, Ga3+, In3+, As3+, Sb3+, Cr6+, and U6+). The problems of the relationship between the integration of these toxic metals into molecular mechanisms with the subsequent development of pathophysiological processes and the appearance of diseases caused by the accumulation of these metals in the body are also addressed in this review. Such apoptosis is characterized by a reduction in cell viability, the activation of caspase-3 and caspase-9, the expression of pro-apoptotic genes (Bax and Bcl-2), and the activation of protein kinases (ERK, JNK, p53, and p38) by mitogens. Moreover, the oxidative stress manifests as the mitochondrial permeability transition pore (MPTP) opening, mitochondrial swelling, an increase in the production of reactive oxygen species (ROS) and H2O2, lipid peroxidation, cytochrome c release, a decline in the inner mitochondrial membrane potential (ΔΨmito), a decrease in ATP synthesis, and reduced glutathione and oxygen consumption as well as cytoplasm and matrix calcium overload due to Ca2+ release from the endoplasmic reticulum (ER). The apoptosis and respiratory dysfunction induced by these metals are discussed regarding their interaction with cellular and mitochondrial thiol groups and Fe2+ metabolism disturbance. Similarities and differences in the toxic effects of Tl+ from those of other heavy metals under review are discussed. Similarities may be due to the increase in the cytoplasmic calcium concentration induced by Tl+ and these metals. One difference discussed is the failure to decrease Tl+ toxicity through metallothionein-dependent mechanisms. Another difference could be the decrease in reduced glutathione in the matrix due to the reversible oxidation of Tl+ to Tl3+ near the centers of ROS generation in the respiratory chain. The latter may explain why thallium toxicity to humans turned out to be higher than the toxicity of mercury, lead, cadmium, copper, and zinc.
Collapse
Affiliation(s)
- Sergey M Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russia
| |
Collapse
|
2
|
Korotkov SM, Sobol KV, Shemarova IV, Nesterov VP. Effect of Sodium Ions on Calcium-Loaded Rat Heart Mitochondria and Frog Myocardium. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Korotkov SM, Nesterov VP, Belostotskaya GB, Brailovskaya IV, Novozhilov AV, Sobol CV. Influence of Tl(+) on the Ca(2+) and Na(+) movement across rat neonatal cardiomyocytes and rat heart mitochondria membranes. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
The Nrf-2/HO-1 Signaling Axis: A Ray of Hope in Cardiovascular Diseases. Cardiol Res Pract 2020; 2020:5695723. [PMID: 32411446 PMCID: PMC7204387 DOI: 10.1155/2020/5695723] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/28/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease, which can lead to angina and shortness of breath, remains one of the most serious threats to human health. Owing to its imperceptible symptoms, it is difficult to determine the pathogenesis and treatment methods for cardiovascular disease. Nuclear factor erythropoietin-2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) is a protein found in all cells of the human body. It is activated, transferred to the nucleus, and bound to DNA by antioxidant response elements (AREs). As a regulator of the antioxidant system, it upregulates the expression of HO-1 to reduce oxidative stress. Nrf2/HO-1 also has the ability to modulate calcium levels to prevent ferroptosis, pyroptosis, autophagy, programmed cell necrosis, alkaliptosis, and clockophagy. In view of the importance of Nrf2/HO-1 in the regulation of homeostasis, this review summarizes current research on the relationship between cardiovascular disease and Nrf2/HO-1. Normal cardiovascular diseases, such as viral myocarditis and myocardial ischemia-reperfusion injury, have been treated with Nrf2/HO-1. Rheumatic heart disease, cardiac tumors, arteriosclerosis, arrhythmia, hypertensive heart disease, and myocardial infarction have also been treated during experiments. Research has demonstrated the clinical application of Nrf2/HO-1 in pediatric cardiovascular disease; further clinical trials will help elucidate the potential of the Nrf2/HO-1 signaling axis.
Collapse
|
5
|
Korotkov SM, Nesterov VP, Sobol KV. The Effects of Thallium on the Spontaneous Contraction of the Heart Muscle and the Energetic Processes in Cardiomyocyte Mitochondria. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919050117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Zhang T, Yin Y, Ji X, Zhang B, Wu S, Wu X, Li H, Li Y, Ma Y, Wang Y, Li H, Zhang B, Wu D. Retracted
: AT1R knockdown confers cardioprotection against sepsis‐induced myocardial injury by inhibiting the MAPK signaling pathway in rats. J Cell Biochem 2018; 121:25-42. [DOI: 10.1002/jcb.27445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/16/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Tao Zhang
- Intensive Care Unit Tianjin Huanhu Hospital Tianjin China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin China
| | - Yu‐Chao Yin
- Intensive Care Unit Tianjin Huanhu Hospital Tianjin China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin China
| | - Xiang Ji
- Intensive Care Unit Tianjin Huanhu Hospital Tianjin China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin China
| | - Bo Zhang
- Intensive Care Unit Tianjin Huanhu Hospital Tianjin China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin China
| | - Sheng Wu
- Intensive Care Unit Tianjin Huanhu Hospital Tianjin China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin China
| | - Xiao‐Zhe Wu
- Intensive Care Unit Tianjin Huanhu Hospital Tianjin China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin China
| | - Hong Li
- Intensive Care Unit Tianjin Huanhu Hospital Tianjin China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin China
| | - Ya‐Dan Li
- Intensive Care Unit Tianjin Huanhu Hospital Tianjin China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin China
| | - Ya‐Ling Ma
- Intensive Care Unit Tianjin Huanhu Hospital Tianjin China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin China
| | - Yu Wang
- Intensive Care Unit Tianjin Huanhu Hospital Tianjin China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin China
| | - Hai‐Tao Li
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin China
- Department of Neurosurgery Tianjin Huanhu Hospital Tianjin China
| | - Bin Zhang
- Department of Orthopedic Tianjin Medical University General Hospital Tianjin China
| | - Di Wu
- Intensive Care Unit Tianjin Huanhu Hospital Tianjin China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin China
| |
Collapse
|
7
|
Sobol CV, Nesterov VP, Belostotskaya GB, Korotkov SM. The effects of Tl+ ions on the dynamics of intracellular Ca2+ in rat cardiomyocytes. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917010201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Korotkov SM, Sobol KV, Shemarova IV, Furaev VV, Shumakov AR, Nesterov VP. A comparative study of the effects of Pr3+ and La3+ ions on calcium dependent processes in frog cardiac muscle and rat heart mitochondria. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916050122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Korotkov SM, Sobol’ KV, Shemarova IV, Furaev VV, Nesterov VP. Comparative study of Y3+ effect on calcium-dependent processes in frog cardiac muscle and mitochondria of rat cardiomyocytes. J EVOL BIOCHEM PHYS+ 2016. [DOI: 10.1134/s0022093016030029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Dong P, Li JH, Xu SP, Wu XJ, Xiang X, Yang QQ, Jin JC, Liu Y, Jiang FL. Mitochondrial dysfunction induced by ultra-small silver nanoclusters with a distinct toxic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2016; 308:139-148. [PMID: 26808252 DOI: 10.1016/j.jhazmat.2016.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/30/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
As noble metal nanoclusters (NCs) are widely employed in nanotechnology, their potential threats to human and environment are relatively less understood. Herein, the biological effects of ultra-small silver NCs coated by bovine serum albumin (BSA) (Ag-BSA NCs) on isolated rat liver mitochondria were investigated by testing mitochondrial swelling, membrane permeability, ROS generation, lipid peroxidation and respiration. It was found that Ag-BSA NCs induced mitochondrial dysfunction via synergistic effects of two different ways: (1) inducing mitochondrial membrane permeability transition (MPT) by interacting with the phospholipid bilayer of the mitochondrial membrane (not with specific MPT pore proteins); (2) damaging mitochondrial respiration by the generation of reactive oxygen species (ROS). As far as we know, this is the first report on the biological effects of ultra-small size nanoparticles (∼2 nm) at the sub-cellular level, which provides significant insights into the potential risks brought by the applications of NCs. It would inspire us to evaluate the potential threats of nanomaterials more comprehensively, even though they showed no obvious toxicity to cells or in vivo animal models. Noteworthy, a distinct toxic mechanism to mitochondria caused by Ag-BSA NCs was proposed and elucidated.
Collapse
Affiliation(s)
- Ping Dong
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jia-Han Li
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Shi-Ping Xu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Juan Wu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xun Xiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Qi-Qi Yang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jian-Cheng Jin
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, PR China.
| |
Collapse
|
11
|
To involvement the conformation of the adenine nucleotide translocase in opening the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria. Toxicol In Vitro 2016; 32:320-32. [PMID: 26835787 DOI: 10.1016/j.tiv.2016.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 01/05/2016] [Accepted: 01/29/2016] [Indexed: 12/30/2022]
Abstract
The conformation of adenine nucleotide translocase (ANT) has a profound impact in opening the mitochondrial permeability transition pore (MPTP) in the inner membrane. Fixing the ANT in 'c' conformation by phenylarsine oxide (PAO), tert-butylhydroperoxide (tBHP), and carboxyatractyloside as well as the interaction of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) with mitochondrial thiols markedly attenuated the ability of ADP to inhibit the MPTP opening. We earlier found (Korotkov and Saris, 2011) that calcium load of rat liver mitochondria in medium containing TlNO3 and KNO3 stimulated the Tl(+)-induced MPTP opening in the inner mitochondrial membrane. The MPTP opening as well as followed increase in swelling, a drop in membrane potential (ΔΨmito), and a decrease in state 3, state 4, and 2,4-dinitrophenol-uncoupled respiration were visibly enhanced in the presence of PAO, tBHP, DIDS, and carboxyatractyloside. However, these effects were markedly inhibited by ADP and membrane-penetrant hydrophobic thiol reagent, N-ethylmaleimide (NEM) which fix the ANT in 'm' conformation. Cyclosporine A additionally potentiated these effects of ADP and NEM. Our data suggest that conformational changes of the ANT may be directly involved in the opening of the Tl(+)-induced MPTP in the inner membrane of Ca(2+)-loaded rat liver mitochondria. Using the Tl(+)-induced MPTP model is discussed in terms finding new transition pore inhibitors and inducers among different chemical and natural compounds.
Collapse
|
12
|
Closure of mitochondrial potassium channels favors opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria. J Bioenerg Biomembr 2015; 47:243-54. [DOI: 10.1007/s10863-015-9611-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/30/2015] [Indexed: 12/23/2022]
|