1
|
Comparative Transcriptomic Analysis of mRNAs, miRNAs and lncRNAs in the Longissimus dorsi Muscles between Fat-Type and Lean-Type Pigs. Biomolecules 2022; 12:biom12091294. [PMID: 36139132 PMCID: PMC9496231 DOI: 10.3390/biom12091294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
In pigs, meat quality and production are two important traits affecting the pig industry and human health. Compared to lean-type pigs, fat-type pigs contain higher intramuscular fat (IMF) contents, better taste and nutritional value. To uncover genetic factors controlling differences related to IMF in pig muscle, we performed RNA-seq analysis on the transcriptomes of the Longissimus dorsi (LD) muscle of Laiwu pigs (LW, fat-type pigs) and commercial Duroc × Landrace × Yorkshire pigs (DLY, lean-type pigs) at 150 d to compare the expression profiles of mRNA, miRNA and lncRNA. A total of 225 mRNAs, 12 miRNAs and 57 lncRNAs were found to be differentially expressed at the criteria of |log2(foldchange)| > 1 and q < 0.05. The mRNA expression of LDHB was significantly higher in the LD muscle of LW compared to DLY pigs with log2(foldchange) being 9.66. Using protein interaction prediction method, we identified more interactions of estrogen-related receptor alpha (ESRRA) associated with upregulated mRNAs, whereas versican (VCAN) and proenkephalin (PENK) were associated with downregulated mRNAs in LW pigs. Integrated analysis on differentially expressed (DE) mRNAs and miRNAs in the LD muscle between LW and DLY pigs revealed two network modules: between five upregulated mRNA genes (GALNT15, FKBP5, PPARGC1A, LOC110258214 and LOC110258215) and six downregulated miRNA genes (ssc-let-7a, ssc-miR190-3p, ssc-miR356-5p, ssc-miR573-5p, ssc-miR204-5p and ssc-miR-10383), and between three downregulated DE mRNA genes (IFRD1, LOC110258600 and LOC102158401) and six upregulated DE miRNA genes (ssc-miR1379-3p, ssc-miR1379-5p, ssc-miR397-5p, ssc-miR1358-5p, ssc-miR299-5p and ssc-miR1156-5p) in LW pigs. Based on the mRNA and ncRNA binding site targeting database, we constructed a regulatory network with miRNA as the center and mRNA and lncRNA as the target genes, including GALNT15/ssc-let-7a/LOC100523888, IFRD1/ssc-miR1379-5p/CD99, etc., forming a ceRNA network in the LD muscles that are differentially expressed between LW and DLY pigs. Collectively, these data may provide resources for further investigation of molecular mechanisms underlying differences in meat traits between lean- and fat-type pigs.
Collapse
|
2
|
Nonneman D, Keel BN, Lindholm-Perry AK, Rohrer G, Wheeler TL, Shackelford SD, King DA. Transcriptomic analysis for pork color – the ham halo effect in biceps femoris. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Pork color is a major indicator of product quality that guides consumerpurchasing decisions. Recently, industry has received an increase in consumercomplaints about the lightness and non-uniformity of ham color, primarilylighter color in the periphery termed “ham halo” that is not caused bymanufacturing procedures. This effect is seen in fresh and processed hams andthe outer, lighter muscle is associated with lower myoglobin concentration, pHand type I fibers. The objective of this study was to identify differences ingene expression profiles between light and normal colored portions of biceps femoris muscle from pork hams.RNA-sequencing was performed for paired light and normal colored muscle samplesfrom 10 animals showing the ham halo effect. Over 50 million paired-end reads(2x75bp) per library were obtained. An average of 99.74% of trimmed high-qualityreads were mapped to the Sscrofa 11.1 genome assembly. Differentially expressedgenes (DEGs) were identified using both the DESeq2 and GFOLD software packages.A total of 14,049 genes were expressed in bicepsfemoris; 13,907 were expressed in both light and normal muscle, while 56and 86 genes were only expressed in light and normal muscle, respectively. Analysiswith DESeq2 identified 392 DEGs with 359 genes being more highly expressed innormal colored muscle. A total of 61 DEGs were identified in the DESeq2analysis and also were identified in at least 7 of the 10 individual animalanalyses. All 61 of these DEGs were up-regulated in normal colored muscle. Geneontology (GO) enrichment analysis of DEGs identified the transition betweenfast and slow fibers, and skeletal muscle adaptation and contraction as themost significant biological process terms. The evaluation of gene expression byRNA-Seq identified DEGs between regions of the biceps femoris with the ham halo effect that are associated with thevariation in pork color.
Collapse
Affiliation(s)
- Dan Nonneman
- US Meat Animal Research Center Reproduction Research Unit
| | | | | | - Gary Rohrer
- US Meat Animal Research Center Reproduction Research Unit
| | - Tommy L. Wheeler
- USDA, Agricultural Research Service Meat Safety and Quality Research Unit, U.S. Meat Animal Research Center
| | | | - D. Andy King
- USDA, Agricultural Research Service U.S. Meat Animal Research Center
| |
Collapse
|
3
|
Fang Y, Hao X, Xu Z, Sun H, Zhao Q, Cao R, Zhang Z, Ma P, Sun Y, Qi Z, Wei Q, Wang Q, Pan Y. Genome-Wide Detection of Runs of Homozygosity in Laiwu Pigs Revealed by Sequencing Data. Front Genet 2021; 12:629966. [PMID: 33995477 PMCID: PMC8116706 DOI: 10.3389/fgene.2021.629966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Laiwu pigs, distinguished by their high intramuscular fat of 7-9%, is an indigenous pig breed of China, and recent studies also found that Laiwu pigs showed high resistance to Porcine circovirus type 2. However, with the introduction of commercial varieties, the population of Laiwu pigs has declined, and some lineages have disappeared, which could result in inbreeding. Runs of homozygosity (ROH) can be used as a good measure of individual inbreeding status and is also normally used to detect selection signatures so as to map the candidate genes associated with economically important traits. In this study, we used data from Genotyping by Genome Reducing and Sequencing to investigate the number, length, coverage, and distribution patterns of ROH in 93 Chinese Laiwu pigs and identified genomic regions with a high ROH frequency. The average inbreeding coefficient calculated by pedigree was 0.021, whereas that estimated by all detected ROH segments was 0.133. Covering 13.4% of the whole genome, a total of 7,508 ROH segments longer than 1 Mb were detected, whose average length was 3.76 Mb, and short segments (1-5 Mb) dominated. For individuals, the coverage was in the range between 0.56 and 36.86%. For chromosomes, SSC6 had the largest number (n = 688), and the number of ROH in SSC12 was the lowest (n = 215). Thirteen ROH islands were detected in our study, and 86 genes were found within those regions. Some of these genes were correlated with economically important traits, such as meat quality (ECI1, LRP12, NDUFA4L2, GIL1, and LYZ), immunity capacity (IL23A, STAT2, STAT6, TBK1, IFNG, and ITH2), production (DCSTAMP, RDH16, and GDF11), and reproduction (ODF1 and CDK2). A total of six significant Gene Ontology terms and nine significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified, most of which were correlated with disease resistance and biosynthesis processes, and one KEGG pathway was related to lipid metabolism. In addition, we aligned all of the ROH islands to the pig quantitative trait loci (QTL) database and finally found eight QTL related to the intramuscular fat trait. These results may help us understand the characteristics of Laiwu pigs and provide insight for future breeding strategies.
Collapse
Affiliation(s)
- Yifei Fang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Hao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingbo Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Cao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Peipei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | - Qishan Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Ramos PM, Li C, Elzo MA, Wohlgemuth SE, Scheffler TL. Mitochondrial oxygen consumption in early postmortem permeabilized skeletal muscle fibers is influenced by cattle breed. J Anim Sci 2020; 98:skaa044. [PMID: 32171017 PMCID: PMC7071943 DOI: 10.1093/jas/skaa044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Functional properties and integrity of skeletal muscle mitochondria (mt) during the early postmortem period may influence energy metabolism and pH decline, thereby impacting meat quality development. Angus typically produce more tender beef than Brahman, a Bos indicus breed known for heat tolerance. Thus, our objectives were to compare mt respiratory function in muscle collected early postmortem (1 h) from Angus and Brahman steers (n = 26); and to evaluate the effect of normal and elevated temperature on mt function ex vivo. We measured mt oxygen consumption rate (OCR) in fresh-permeabilized muscle fibers from Longissimus lumborum (LL) at 2 temperatures (38.5 and 40.0 °C) and determined citrate synthase (CS) activity and expression of several mt proteins. The main effects of breed, temperature, and their interaction were tested for mt respiration, and breed effect was tested for CS activity and protein expression. Breed, but not temperature (P > 0.40), influenced mt OCR (per tissue weight), with Brahman exhibiting greater complex I+II-mediated oxidative phosphorylation capacity (P = 0.05). Complex I- and complex II-mediated OCR also tended to be greater in Brahman (P = 0.07 and P = 0.09, respectively). Activity of CS was higher in LL from Brahman compared to Angus (P = 0.05). Expression of specific mt proteins did not differ between breeds, except for higher expression of adenosine triphosphate (ATP) synthase subunit 5 alpha in Brahman muscle (P = 0.04). Coupling control ratio differed between breeds (P = 0.05), revealing greater coupling between oxygen consumption and phosphorylation in Brahman. Our data demonstrate that both Angus and Brahman mt retained functional capacity and integrity 1-h postmortem; greater oxidative phosphorylation capacity and coupling in Brahman mt could be related to heat tolerance and impact early postmortem metabolism.
Collapse
Affiliation(s)
- Patricia M Ramos
- Department of Animal Sciences, “Luiz de Queiroz” College of Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Chengcheng Li
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Mauricio A Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | | | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL
| |
Collapse
|
5
|
Liu X, Trakooljul N, Hadlich F, Murani E, Wimmers K, Ponsuksili S. Mitochondrial-nuclear crosstalk, haplotype and copy number variation distinct in muscle fiber type, mitochondrial respiratory and metabolic enzyme activities. Sci Rep 2017; 7:14024. [PMID: 29070892 PMCID: PMC5656670 DOI: 10.1038/s41598-017-14491-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
Genes expressed in mitochondria work in concert with those expressed in the nucleus to mediate oxidative phosphorylation (OXPHOS), a process that is relevant for muscle metabolism and meat quality. Mitochondrial genome activity can be efficiently studied and compared in Duroc and Pietrain pigs, which harbor different mitochondrial haplotypes and distinct muscle fiber types, mitochondrial respiratory activities, and fat content. Pietrain pigs homozygous-positive for malignant hyperthermia susceptibility (PiPP) carried only haplotype 8 and showed the lowest absolute mtDNA copy number accompanied by a decrease transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6 and nuclear-encoded subunits NDUFA11 and NDUFB8. In contrast, we found that haplotype 4 of Duroc pigs had significantly higher mitochondrial DNA (mtDNA) copy numbers and an increase transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6. These results suggest that the variation in mitochondrial and nuclear genetic background among these animals has an effect on mitochondrial content and OXPHOS system subunit expression. We observed the co-expression pattern of mitochondrial and nuclear encoded OXPHOS subunits suggesting that the mitochondrial-nuclear crosstalk functionally involves in muscle metabolism. The findings provide valuable information for understanding muscle biology processes and energy metabolism, and may direct use for breeding strategies to improve meat quality and animal health.
Collapse
Affiliation(s)
- Xuan Liu
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Frieder Hadlich
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Eduard Murani
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| |
Collapse
|