1
|
Žilinskas J, Stukas D, Jasukaitienė A, Žievytė I, Balion Z, Šapauskienė J, Banienė R, Paužas H, Lizdenis P, Čėsna V, Dambrauskas Ž, Gulbinas A, Tamelis A. Assessing the Therapeutic Impacts of HAMLET and FOLFOX on BRAF-Mutated Colorectal Cancer: A Study of Cancer Cell Survival and Mitochondrial Dynamics In Vitro and Ex Vivo. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:142. [PMID: 38256402 PMCID: PMC10818271 DOI: 10.3390/medicina60010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Colorectal cancer (CRC) is a major global health challenge. The BRAF V600E mutation, found in 8-12% of CRC patients, exacerbates this by conferring poor prognosis and resistance to therapy. Our study focuses on the efficacy of the HAMLET complex, a molecular substance derived from human breast milk, on CRC cell lines and ex vivo biopsies harboring this mutation, given its previously observed selective toxicity to cancer cells. Materials and Methods: we explored the effects of combining HAMLET with the FOLFOX chemotherapy regimen on CRC cell lines and ex vivo models. Key assessments included cell viability, apoptosis/necrosis induction, and mitochondrial function, aiming to understand the mutation-specific resistance or other cellular response mechanisms. Results: HAMLET and FOLFOX alone decreased viability in CRC explants, irrespective of the BRAF mutation status. Notably, their combination yielded a marked decrease in viability, particularly in the BRAF wild-type samples, suggesting a synergistic effect. While HAMLET showed a modest inhibitory effect on mitochondrial respiration across both mutant and wild-type samples, the response varied depending on the mutation status. Significant differences emerged in the responses of the HT-29 and WiDr cell lines to HAMLET, with WiDr cells showing greater resistance, pointing to factors beyond genetic mutations influencing drug responses. A slight synergy between HAMLET and FOLFOX was observed in WiDr cells, independent of the BRAF mutation. The bioenergetic analysis highlighted differences in mitochondrial respiration between HT-29 and WiDr cells, suggesting that bioenergetic profiles could be key in determining cellular responses to HAMLET. Conclusions: We highlight the potential of HAMLET and FOLFOX as a combined therapeutic approach in BRAF wild-type CRC, significantly reducing cancer cell viability. The varied responses in CRC cell lines, especially regarding bioenergetic and mitochondrial factors, emphasize the need for a comprehensive approach considering both genetic and metabolic aspects in CRC treatment strategies.
Collapse
Affiliation(s)
- Justas Žilinskas
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (H.P.); (P.L.); (V.Č.); (Ž.D.); (A.G.); (A.T.)
| | - Darius Stukas
- Institute of Digestive Research, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (D.S.); (A.J.); (I.Ž.)
| | - Aldona Jasukaitienė
- Institute of Digestive Research, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (D.S.); (A.J.); (I.Ž.)
| | - Inga Žievytė
- Institute of Digestive Research, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (D.S.); (A.J.); (I.Ž.)
| | - Zbigniev Balion
- Preclinical Research Laboratory for Medicinal Products, Institute of Cardiology, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania;
| | - Jurgita Šapauskienė
- Department of Biochemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.Š.); (R.B.)
| | - Rasa Banienė
- Department of Biochemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.Š.); (R.B.)
| | - Henrikas Paužas
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (H.P.); (P.L.); (V.Č.); (Ž.D.); (A.G.); (A.T.)
| | - Paulius Lizdenis
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (H.P.); (P.L.); (V.Č.); (Ž.D.); (A.G.); (A.T.)
| | - Vaidotas Čėsna
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (H.P.); (P.L.); (V.Č.); (Ž.D.); (A.G.); (A.T.)
| | - Žilvinas Dambrauskas
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (H.P.); (P.L.); (V.Č.); (Ž.D.); (A.G.); (A.T.)
- Institute of Digestive Research, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (D.S.); (A.J.); (I.Ž.)
| | - Antanas Gulbinas
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (H.P.); (P.L.); (V.Č.); (Ž.D.); (A.G.); (A.T.)
- Institute of Digestive Research, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (D.S.); (A.J.); (I.Ž.)
| | - Algimantas Tamelis
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (H.P.); (P.L.); (V.Č.); (Ž.D.); (A.G.); (A.T.)
| |
Collapse
|
2
|
Yang Y, Huangfu L, Li H, Yang D. Research progress of hyperthermia in tumor therapy by influencing metabolic reprogramming of tumor cells. Int J Hyperthermia 2023; 40:2270654. [PMID: 37871910 DOI: 10.1080/02656736.2023.2270654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Cellular metabolic reprogramming is an important feature of malignant tumors. Metabolic reprogramming causes changes in the levels or types of specific metabolites inside and outside the cell, which affects tumorigenesis and progression by influencing gene expression, the cellular state, and the tumor microenvironment. During tumorigenesis, a series of changes in the glucose metabolism, fatty acid metabolism, amino acid metabolism, and cholesterol metabolism of tumor cells occur, which are involved in the process of cellular carcinogenesis and constitute part of the underlying mechanisms of tumor formation. Hyperthermia, as one of the main therapeutic tools for malignant tumors, has obvious effects on tumor cell metabolism. In this paper, we will combine the latest research progress in the field of cellular metabolic reprogramming and focus on the current experimental research and clinical treatment of hyperthermia in cellular metabolic reprogramming to discuss the feasibility of cellular metabolic reprogramming-related mechanisms guiding hyperthermia in malignant tumor treatment, so as to provide more ideas for hyperthermia to treat malignant tumors through the direction of cellular metabolic reprogramming.
Collapse
Affiliation(s)
- Yuchuan Yang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Linkuan Huangfu
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Huizhen Li
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Daoke Yang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
3
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Lachowicz JI, Mateddu A, Coni P, Caltagirone C, Murgia S, Gibson D, Dalla Torre G, Lopez X, Meloni F, Pichiri G. Study of the DNA binding mechanism and in vitro activity against cancer cells of iron(III) and aluminium(III) kojic acid derivative complexes. Dalton Trans 2022; 51:6254-6263. [PMID: 35373808 DOI: 10.1039/d2dt00111j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal ions have unique electrochemical and spectroscopical properties that cannot be attained by purely organic compounds. Most of the metal ions are toxic to humans, but paradoxically, metallodrugs are used in medicine as therapeutics and theranostics. Metallodrugs are eliminated in urine and faeces, and therefore release toxic metals and ligands into aquatic ecosystems, thereby raising concerns regarding environmental risks. The use of metallodrugs based on essential metal ions (i.e., iron, copper and zinc), instead of toxic ions, is a new alternative with minor hazards. Kojic acid is an Asperigillus oryzae metabolite of low toxicity used in the food and cosmetics industries. Its derivatives form stable complexes with iron(III) ions, which bind effectively to DNA and inhibit DNA polymerization. The iron(III)/S2 ligand complexes reduce in vitro colon carcinoma (Caco2) cell viability and significantly decrease the cell number. The kojic acid derivative complexes with iron(III) presented here are an alternative to the currently used platinum complexes in cancer therapy.
Collapse
Affiliation(s)
- Joanna I Lachowicz
- University of Cagliari, Department of Medical Sciences and Public Health, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy.
| | - Anna Mateddu
- University of Cagliari, Department of Medical Sciences and Public Health, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy.
| | - Pierpaolo Coni
- University of Cagliari, Department of Medical Sciences and Public Health, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy.
| | - Claudia Caltagirone
- University of Cagliari, Department of Chemical and Geological Science, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy
| | - Sergio Murgia
- Department of Life and Environmental Sciences, University of Cagliari, via Ospedale 72, Cagliari I-09124, Italy.,CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Florence, Italy
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Gabriele Dalla Torre
- Donostia International Physics Centre (DIPC), PK 1072, 20080 Donostia, Euskadi, Spain
| | - Xabier Lopez
- Donostia International Physics Centre (DIPC), PK 1072, 20080 Donostia, Euskadi, Spain
| | - Federico Meloni
- University of Cagliari, Department of Medical Sciences and Public Health, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy.
| | - Giuseppina Pichiri
- University of Cagliari, Department of Medical Sciences and Public Health, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy.
| |
Collapse
|
5
|
Aminzadeh-Gohari S, Weber DD, Vidali S, Catalano L, Kofler B, Feichtinger RG. From old to new - Repurposing drugs to target mitochondrial energy metabolism in cancer. Semin Cell Dev Biol 2020; 98:211-223. [PMID: 31145995 PMCID: PMC7613924 DOI: 10.1016/j.semcdb.2019.05.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
Abstract
Although we have entered the era of personalized medicine and tailored therapies, drugs that target a large variety of cancers regardless of individual patient differences would be a major advance nonetheless. This review article summarizes current concepts and therapeutic opportunities in the area of targeting aerobic mitochondrial energy metabolism in cancer. Old drugs previously used for diseases other than cancer, such as antibiotics and antidiabetics, have the potential to inhibit the growth of various tumor entities. Many drugs are reported to influence mitochondrial metabolism. However, here we consider only those drugs which predominantly inhibit oxidative phosphorylation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Silvia Vidali
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Institute of Human Genetics, Helmholtz Zentrum München, Technical University of Munich, Munich, Germany
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Corresponding author at: Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Muellner-Hauptstrasse 48, 5020 Salzburg, Austria. (B. Kofler)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
6
|
Jiang T, Jiang D, You D, Zhang L, Liu L, Zhao Q. Agonism of GPR120 prevents ox-LDL-induced attachment of monocytes to endothelial cells. Chem Biol Interact 2020; 316:108916. [PMID: 31870843 DOI: 10.1016/j.cbi.2019.108916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL)-induced endothelial inflammation plays an important role in the development of cardiovascular diseases. G protein-coupled receptors (GPCR) are gaining traction as potential treatment targets due to their roles in mediating a wide range of physiological processes. GPR120 is a recently identified omega-3 fatty acid receptor. We hypothesized that agonism of GPR120 might attenuate ox-LDL-induced endothelial dysfunction. In the present study, we tested the effects of two GPR120 agonists-GW9508 and TUG-891-in mitigating endothelial insult induced by ox-LDL in human aortic endothelial cells (HAECs). Real-time PCR, western blot, and ELISA analyses were used in our experiments. Our findings demonstrate that GPR120 is downregulated by exposure to ox-LDL, suggesting a role for GPR120 in mediating ox-LDL insult. Furthermore, we found that agonism of GPR120 could suppress oxidative stress and inflammation by inhibiting the production of reactive oxygen species and the expression of proinflammatory cytokines. Importantly, we show that agonism of GPR120 prevents the attachment of monocytes to endothelial cells by suppressing the expression of VCAM-1 and E-selectin. Finally, we show that agonism of GPR120 exerts a remarkable atheroprotective effect by elevating the expression level of Krüppel-like factor 2 (KLF2). Together, our results demonstrate a potential role for specific agonism of GPR120 in the prevention of endothelial damages induced by ox-LDL.
Collapse
Affiliation(s)
- Tiechao Jiang
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China; Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033, China
| | - Dongli Jiang
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Dong You
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lirong Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Long Liu
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China; Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033, China.
| | - Qini Zhao
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China; Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033, China.
| |
Collapse
|
7
|
Sukovas A, Silkuniene G, Trumbeckaite S, Jasukaitiene A, Degutyte-Fomins L, Mildaziene V, Gulbinas A, Baniene R, Dambrauskas Z, Paskauskas S. Hyperthermia potentiates cisplatin cytotoxicity and negative effects on mitochondrial functions in OVCAR-3 cells. J Bioenerg Biomembr 2019; 51:301-310. [PMID: 31332716 DOI: 10.1007/s10863-019-09805-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/11/2019] [Indexed: 01/23/2023]
Abstract
The aim of this study was to determine the effects of hyperthermia, cisplatin and their combination on mitochondrial functions such as glutamate dehydrogenase (GDH) activity and mitochondrial respiration rates, as well as survival of cultured ovarian adenocarcinoma OVCAR-3 cells. Cells treated for 1 h with hyperthermia (40 and 43 °C) or cisplatin (IC50) or a combination of both treatments were left for recovery at 37 °C temperature for 24 h or 48 h. The obtained results revealed that 43 °C hyperthermia potentiated effects of cisplatin treatment: combinatory treatment more strongly suppressed GDH activity and expression, mitochondrial functions, and decreased survival of OVCAR-3 cells in comparison to separate single treatments. We obtained evidence that in the OVCAR-3 cell line GDH was directly activated by hyperthermia (cisplatin eliminated this effect); however, this effect was followed by GDH inhibition after 48 h recovery. A combination of 43 °C hyperthermia with cisplatin induced stronger GDH inhibition in comparison to separate treatments, and negative effects exerted on GDH activity correlated with suppression of mitochondrial respiration with glutamate + malate. Cisplatin did not induce uncoupling of oxidative phosphorylation in OVCAR-3 cells but induced impairment of the outer mitochondrial membrane in combination with 43 °C hyperthermia. Hyperthermia (43 °C) potentiated cytotoxicity of cisplatin in an OVCAR-3 cell line.
Collapse
Affiliation(s)
- Arturas Sukovas
- Department of Obstetrics and Gynaecology Lithuanian University of Health Sciences, Eiveniu str.2, LT-50009, Kaunas, Lithuania.
| | - Giedre Silkuniene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos str. 8, 44404, Kaunas, Lithuania
| | - Sonata Trumbeckaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50161, Kaunas, Lithuania
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 13, LT-50166, Kaunas, Lithuania
| | - Aldona Jasukaitiene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
| | - Laima Degutyte-Fomins
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos str. 8, 44404, Kaunas, Lithuania
| | - Vida Mildaziene
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos str. 8, 44404, Kaunas, Lithuania
| | - Antanas Gulbinas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
- Department of Surgery, Lithuanian University of Health Sciences, Eiveniu str. 2, LT-50009, Kaunas, Lithuania
| | - Rasa Baniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50161, Kaunas, Lithuania
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50161, Kaunas, Lithuania
| | - Zilvinas Dambrauskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009, Kaunas, Lithuania
- Department of Surgery, Lithuanian University of Health Sciences, Eiveniu str. 2, LT-50009, Kaunas, Lithuania
| | - Saulius Paskauskas
- Department of Obstetrics and Gynaecology Lithuanian University of Health Sciences, Eiveniu str.2, LT-50009, Kaunas, Lithuania
| |
Collapse
|