1
|
Gasbarri C, Angelini G. Cyclocurcumin as Promising Bioactive Natural Compound: An Overview. Molecules 2024; 29:1451. [PMID: 38611731 PMCID: PMC11013289 DOI: 10.3390/molecules29071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Although identical in molecular formula and weight, curcumin and cyclocurcumin show remarkable differences in their reactivity. Both are natural compounds isolated from the rhizome of turmeric, the former is involved in the diketo/keto-enol tautomerism through the bis-α,β-unsaturated diketone unit according to the polarity of the solvent, while the latter could react by trans-cis isomerization due to the presence of the α,β-unsaturated dihydropyranone moiety. Even if curcumin is generally considered responsible of the therapeutical properties of Curcuma longa L. due to its high content, cyclocurcumin has attracted great interest over the last several decades for its individual behavior and specific features as a bioactive compound. Cyclocurcumin has a hydrophobic nature characterized by fluorescence emission, solvatochromism, and the tendency to form spherical fluorescent aggregates in aqueous solution. Molecular docking analysis reveals the potentiality of cyclocurcumin as antioxidant, enzyme inhibitor, and antiviral agent. Promising biological activities are observed especially in the treatment of degenerative and cardiovascular diseases. Despite the versatility emerging from the data reported herein, the use of cyclocurcumin seems to remain limited in clinical applications mainly because of its low solubility and bioavailability.
Collapse
Affiliation(s)
- Carla Gasbarri
- Department of Pharmacy, University “G. d’Annunzio” of Chieti—Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | | |
Collapse
|
2
|
Yu CX, Tan JW, Rullah K, Imran S, Tham CL. Insight parameter drug design for human β-tryptase inhibition integrated molecular docking, QSAR, molecular dynamics simulation, and pharmacophore modelling studies of α-keto-[1,2,4]-oxadiazoles. J Biomol Struct Dyn 2023; 41:12978-12996. [PMID: 36709457 DOI: 10.1080/07391102.2023.2171131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
Dengue hemorrhagic fever (DHF) is severe dengue with a hallmark of vascular leakage. β-tryptase has been found to promote vascular leakage in DHF patients, which could be a potential target for DHF treatment. This study aims to develop a theoretical background for designing and selecting human β-tryptase inhibitors through computational studies. Thirty-four α-keto-[1,2,3]-oxadiazoles scaffold-based compounds were used to generate 2D-QSAR models and for molecular docking studies with β-tryptase (PDB Code 4A6L). In addition, molecular dynamics (MD) simulation and molecular mechanics generalised born surface area (MM-GBSA) analysis on the binding of the reported most active compound, compound 11e, towards β-tryptase were performed. Finally, a structure-based pharmacophore model was generated. The selected 2D-QSAR models have statistically proven good models by internal and external validation as well as the y-randomization test. The docking results of compound 11e showed lower CDOCKER energy than the 4A6L co-crystallised ligand and a similar binding pattern as the 4A6L co-crystallised ligand. From molecular dynamics simulation, 4A6L in compound 11e bound state has RMSD below 2 Å throughout the 500 ns simulation, indicating the docked complex is stable. Besides, MM-GBSA analysis suggested the 4A6L-compound 11e docked complex (-66.04 Kcal/mol) is structurally as stable as the 4A6L-native ligand co-crystallized structure (-66.84 Kcal/mol). The best pharmacophore model identified features included hydrogen bond acceptor, ionic interaction, hydrophobic interaction, and aromatic ring, which contribute to the inhibitory potency of a compound. This study supplied insight and knowledge for developing novel chemical compounds with improved inhibition of β-tryptase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chai Xin Yu
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Jian Wei Tan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kamal Rullah
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Syahrul Imran
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Stepanova VA, Guerrero A, Schull C, Christensen J, Trudeau C, Cook J, Wolmutt K, Blochwitz J, Ismail A, West JK, Wheaton AM, Guzei IA, Yao B, Kubatova A. Hybrid Synthetic and Computational Study of an Optimized, Solvent-Free Approach to Curcuminoids. ACS OMEGA 2022; 7:7257-7277. [PMID: 35252716 PMCID: PMC8892666 DOI: 10.1021/acsomega.1c07006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
A green and optimized protocol has been developed for the preparation of symmetric 1,7-bis(aryl)-1,6-heptadiene-3,5-diones and asymmetric 2-aryl-6-arylidenecyclohexanones with modified substrate scope and good functional group tolerance. Syntheses proceed smoothly under solvent-free conditions, providing moderate to excellent product yields with a minimal workup procedure. Control experiments, spectroscopic, and computational studies support a mechanism involving the boron-assisted in situ generation of imine intermediates. Crystal structures of three curcuminoids and isolated mechanistic intermediates are reported. The data provide insight for the further development of solvent-free protocols toward diverse curcumin derivatives in the fields of pharmaceutical and synthetic chemistries.
Collapse
Affiliation(s)
- Valeria A. Stepanova
- Department
of Chemistry and Biochemistry, University
of Wisconsin La Crosse, 1725 State Street, La Crosse, Wisconsin 54601, United States
| | - Andres Guerrero
- Department
of Chemistry and Biochemistry, University
of Wisconsin La Crosse, 1725 State Street, La Crosse, Wisconsin 54601, United States
| | - Cullen Schull
- Department
of Chemistry and Biochemistry, University
of Wisconsin La Crosse, 1725 State Street, La Crosse, Wisconsin 54601, United States
| | - Joshua Christensen
- Department
of Chemistry and Biochemistry, University
of Wisconsin La Crosse, 1725 State Street, La Crosse, Wisconsin 54601, United States
| | - Claire Trudeau
- Department
of Chemistry and Biochemistry, University
of Wisconsin La Crosse, 1725 State Street, La Crosse, Wisconsin 54601, United States
| | - Joshua Cook
- Department
of Chemistry and Biochemistry, University
of Wisconsin La Crosse, 1725 State Street, La Crosse, Wisconsin 54601, United States
| | - Kyle Wolmutt
- Department
of Chemistry and Biochemistry, University
of Wisconsin La Crosse, 1725 State Street, La Crosse, Wisconsin 54601, United States
| | - Jordan Blochwitz
- Department
of Chemistry and Biochemistry, University
of Wisconsin La Crosse, 1725 State Street, La Crosse, Wisconsin 54601, United States
| | - Abdelrahman Ismail
- Department
of Chemistry and Biochemistry, University
of Wisconsin La Crosse, 1725 State Street, La Crosse, Wisconsin 54601, United States
| | - Joseph K. West
- Department
of Chemistry, Winona State University, 175 West Mark Street, Winona, Minnesota 55987, United States
| | - Amelia M. Wheaton
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ilia A. Guzei
- Department
of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Bin Yao
- Department
of Chemistry, University of North Dakota, 151 Cornell Street, Grand Forks, North Dakota 58202, United States
| | - Alena Kubatova
- Department
of Chemistry, University of North Dakota, 151 Cornell Street, Grand Forks, North Dakota 58202, United States
| |
Collapse
|