1
|
Yang S, Wang L, Gao R, Li Y, Zhang D, Wang C, Liu G, Na J, Xu P, Wang X, Jia Y, Huang Y. UFMylation safeguards human hepatocyte differentiation and liver homeostasis by regulating ribosome dissociation. Cell Rep 2025; 44:115686. [PMID: 40347470 DOI: 10.1016/j.celrep.2025.115686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/10/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
Ribosomal UFMylation contributes to ribosome heterogeneity and is associated with ribosome-associated quality control at the endoplasmic reticulum. However, the specific pathophysiological functions of ribosomal UFMylation remain unknown. In this study, we systematically demonstrate the significance of UFMylation in the differentiation and maturation of hepatocytes using human embryonic stem cell-derived hepatocyte-like cells and liver bud organoids as experimental platforms. We also develop a strategy to identify UFMylated substrates and confirm that RPL26 is a substrate in the liver. Additionally, we discover that mice with the Rpl26 c.395A>G (p.K132R) mutation are more susceptible to steatosis induced by a high-fat diet. Further investigations reveal a key role of CDK5RAP3 and RPL26 UFMylation in regulating ribosome dissociation. Our findings suggest that ribosome UFMylation serves as an important safeguard for liver development and homeostasis and may represent a potential therapeutic target for nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Shuchun Yang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Li Wang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ran Gao
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yanchang Li
- State Key Laboratory of Medical Proteomics, Beijng Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drugs of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Duo Zhang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chenxi Wang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Guang Liu
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Ping Xu
- State Key Laboratory of Medical Proteomics, Beijng Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drugs of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Xiaoyue Wang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yuyan Jia
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| | - Yue Huang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
2
|
Yang W, Zhou C, Sun Q, Guan G. Anisomycin inhibits angiogenesis, growth, and survival of triple-negative breast cancer through mitochondrial dysfunction, AMPK activation, and mTOR inhibition. Can J Physiol Pharmacol 2022; 100:612-620. [PMID: 35852219 DOI: 10.1139/cjpp-2021-0577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aberrant upregulation of mitochondrial biogenesis is observed in breast cancer and holds potential therapeutic option. In our work, we showed that inhibition of mitochondrial function by anisomycin is effective against triple-negative breast cancer (TNBC). Anisomycin inhibits growth and induces caspase-dependent apoptosis in a panel of TNBC cell lines. Of note, anisomycin at a tolerable dose remarkably suppresses growth of TNBC in mice. In addition, anisomycin effectively targets breast cancer angiogenesis through inhibiting capillary network formation, migration, proliferation, and survival. Mechanistic studies show that although anisomycin activates p38 and JNK, their activations are not required for anisomycin's action. In contrast, anisomycin inhibits mitochondrial respiration, and decreases mitochondrial membrane potential and adenosine triphosphate (ATP) level. The inhibitory effect of anisomycin is significantly reversed in mitochondria respiration-deficient ρ0 cells. As a consequence, anisomycin activates AMPK and inhibits mammalian target-of-rapamycin signaling pathways. Our work demonstrated that anisomycin is a useful addition to the treatment armamentarium for TNBC.
Collapse
Affiliation(s)
- Wenjuan Yang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| | - Cuiling Zhou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| | - Qiushi Sun
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| | - Gege Guan
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| |
Collapse
|