1
|
Takai M, Mori S, Honoki K, Tsujiuchi T. Roles of lysophosphatidic acid (LPA) receptor-mediated signaling in cancer cell biology. J Bioenerg Biomembr 2024; 56:475-482. [PMID: 38886303 DOI: 10.1007/s10863-024-10028-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Lysophosphatidic acid (LPA) is a simple lipid which is endogenously synthesized from lysophosphatidylcholine (LPC) by autotaxin (ATX). LPA mediates a variety of cellular responses through the binding of G protein-coupled LPA receptors (LPA1 to LPA6). It is considered that LPA receptor-mediated signaling plays an important role in the pathogenesis of human malignancy. Genetic alterations and epigenetic changes of LPA receptors have been detected in some cancer cells as well as LPA per se. Moreover, LPA receptors contribute to the promotion of tumor progression, including cell proliferation, invasion, metastasis, tumorigenicity, and angiogenesis. In recent studies, the activation of LPA receptor-mediated signaling regulates chemoresistance and radiosensitivity in cancer cells. This review provides an updated overview on the roles of LPA receptor-mediated signaling in the regulation of cancer cell functions and its potential utility as a molecular target for novel therapies in clinical cancer approaches.
Collapse
Affiliation(s)
- Miwa Takai
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4- 1, Kowakae, Higashiosaka, 577-8502, Osaka, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521, Nara, Japan
| | - Kanya Honoki
- Department of Orthopedic Oncology & Reconstructive Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521, Nara, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4- 1, Kowakae, Higashiosaka, 577-8502, Osaka, Japan.
| |
Collapse
|
2
|
Takai M, Yamamoto M, Yashiro N, Nagano S, Kusumoto Y, Tamura M, Taniguchi A, Tsujiuchi T. Impact of cellular ATP levels on cell viability in response to fluorouracil through lysophosphatidic acid (LPA) receptor-4 (LPA 4) and LPA 6 in colon cancer cells. Adv Biol Regul 2024; 93:101042. [PMID: 39024813 DOI: 10.1016/j.jbior.2024.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Lysophosphatidic acid (LPA) signaling via LPA receptors (LPA1 to LPA6) mediates various aspects of cancer cell behaviors. This study aimed to investigate the variation in intracellular ATP levels and its impact on cell viability in response to fluorouracil (5-FU) through LPA4 and LPA6 in colon cancer DLD-1 cells. LPA4 and LPA6 are linked to Gs and Gi proteins. Gs protein stimulates the activity of adenylyl cyclase, which catalyzes the conversion of ATP to cAMP, whereas Gi protein inhibits this activity. In cell survival assay, cells were treated with 5-FU every 24 h for 3 days. The viability in response to 5-FU in DLD-1 cells was enhanced by LPA4 and LPA6 knockdowns. Furthermore, LPA4 and LPA6 knockdowns reduced the expression of cleaved-PARP1 protein when cells were treated with 5-FU. Since ethidium bromide (EtBr) reduces mitochondrial DNA level in cultured cells, EtBr-treated (DLD-EtBr) cells were generated from DLD-1 cells. The viability to 5-FU in DLD-EtBr cells was higher than that of DLD-1 cells. Additionally, culturing DLD-1 cells in a low glucose-containing medium led to increased viability to 5-FU. LPAR4 and LPAR6 expressions were reduced in both DLD-EtBr and low glucose-treated cells. The cellular ATP levels were significantly decreased in DLD-1 cells following EtBr treatment and exposure to low glucose conditions. Conversely, in the presence of LPA, LPA4 and LPA6 knockdowns resulted in a marked elevation of ATP levels. These results suggest that cell viability to 5-FU is negatively regulated via the activation of LPA4-and LPA6-Gs protein pathways in DLD-1 cells rather than Gi protein.
Collapse
Affiliation(s)
- Miwa Takai
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Mao Yamamoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Narumi Yashiro
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Shion Nagano
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Yuka Kusumoto
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Moemi Tamura
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Anri Taniguchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| |
Collapse
|
3
|
Qi Y, Wang Y, Yuan J, Xu Y, Pan H. Unveiling the therapeutic promise: exploring Lysophosphatidic Acid (LPA) signaling in malignant bone tumors for novel cancer treatments. Lipids Health Dis 2024; 23:204. [PMID: 38943207 PMCID: PMC11212261 DOI: 10.1186/s12944-024-02196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Malignant bone tumors, including primary bone cancer and metastatic bone tumors, are a significant clinical challenge due to their high frequency of presentation, poor prognosis and lack of effective treatments and therapies. Bone tumors are often accompanied by skeletal complications such as bone destruction and cancer-induced bone pain. However, the mechanisms involved in bone cancer progression, bone metastasis and skeletal complications remain unclear. Lysophosphatidic acid (LPA), an intercellular lipid signaling molecule that exerts a wide range of biological effects mainly through specifically binding to LPA receptors (LPARs), has been found to be present at high levels in the ascites of bone tumor patients. Numerous studies have suggested that LPA plays a role in primary malignant bone tumors, bone metastasis, and skeletal complications. In this review, we summarize the role of LPA signaling in primary bone cancer, bone metastasis and skeletal complications. Modulating LPA signaling may represent a novel avenue for future therapeutic treatments for bone cancer, potentially improving patient prognosis and quality of life.
Collapse
Affiliation(s)
- Yichen Qi
- Huankui Academy, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Yukai Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Jinping Yuan
- The First Clinical Medical College, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Yufei Xu
- The First Clinical Medical College, Nanchang University, Nanchang, 330031, China
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China
| | - Haili Pan
- Neurological Institute of Jiangxi Province, Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi Hospital, National Regional Center for Neurological Diseases, No. 266 Fenghe North Avenue, Honggutan District, Nanchang, Jiangxi, 330038, P. R. China.
| |
Collapse
|
4
|
Ikeda H, Takai M, Tsujiuchi T. Lysophosphatidic acid (LPA) receptor-mediated signaling and cellular responses to anticancer drugs and radiation of cancer cells. Adv Biol Regul 2024; 92:101029. [PMID: 38377635 DOI: 10.1016/j.jbior.2024.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Lysophosphatidic acid (LPA) is a simple physiological lipid and structurally consists of a fatty, a phosphate and a glycerol. LPA binds to G protein-coupled LPA receptors (LPA1 to LPA6). LPA receptor-mediated signaling mediates a variety of biological responses, such as cell growth, migration, morphogenesis, differentiation and protection from apoptosis. It is considered that LPA receptor-mediated signaling plays an important role in the pathogenesis of human malignancies. So far, genetic and epigenetic alterations of LPA receptors have been found in several cancer cells as well as abnormal LPA production. In addition, LPA receptor-mediated signaling regulates the promotion of malignant behaviors, including chemo- and/or radiation-resistance. Chemotherapy and radiotherapy are the common approaches to the treatments of cancers. However, resistance to anticancer drugs and irradiation is the most critical limitation for chemotherapy and radiotherapy. In this review, we provide the roles of LPA receptor-mediated signaling in the regulation of cellular responses induced by chemotherapeutic agents and irradiation and its biological utility as a possible molecular target for improving cancer cell responses to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Hiroko Ikeda
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Miwa Takai
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan.
| |
Collapse
|
5
|
Yu H, Zhang B, Qi L, Han J, Guan M, Li J, Meng Q. AP003352.1/miR-141-3p axis enhances the proliferation of osteosarcoma by LPAR3. PeerJ 2023; 11:e15937. [PMID: 37727685 PMCID: PMC10506581 DOI: 10.7717/peerj.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Osteosarcoma (OS) is a highly malignant tumor with a poor prognosis and a growing incidence. LncRNAs and microRNAs control the occurrence and development process of osteosarcoma through ceRNA patterns. The LPAR3 gene is important in cancer cell proliferation, apoptosis and disease development. However, the regulatory mechanism of the ceRNA network through which LPAR3 participates in osteosarcoma has not been clarified. Herein, our study demonstrated that the AP003352.1/miR-141-3p axis drives LPAR3 expression to induce the malignant progression of osteosarcoma. First, the expression of LPAR3 is regulated by the changes in AP003352.1 and miR-141-3p. Similar to the ceRNA of miR-141-3p, AP003352.1 regulates the expression of LPAR3 through this mechanism. In addition, the regulation of AP003352.1 in malignant osteosarcoma progression depends to a certain degree on miR-141-3p. Importantly, the AP003352.1/miR-141-3p/LPAR3 axis can better serve as a multi-gene diagnostic marker for osteosarcoma. In conclusion, our research reveals a new ceRNA regulatory network, which provides a novel potential target for the diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Hongde Yu
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Bolun Zhang
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Lin Qi
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Jian Han
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Mingyang Guan
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Jiaze Li
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Qingtao Meng
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| |
Collapse
|
6
|
Okuda A, Takai M, Kurisu R, Takamoto M, Ikeda H, Tsujiuchi T. Roles of lysophosphatidic acid (LPA) receptor-2 (LPA 2) in the regulation of cellular responses induced by X-ray irradiation and hydrogen peroxide in pancreatic cancer cells. Int J Radiat Biol 2023; 99:1925-1933. [PMID: 37523658 DOI: 10.1080/09553002.2023.2241890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/10/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE Lysophosphatidic acid (LPA) receptor-mediated signaling regulates various biological functions in cancer cells. This study aimed to evaluate the roles of LPA receptor-2 (LPA2) in cellular responses induced by X-ray irradiation in pancreatic cancer PANC-1 cells. Since X-ray irradiation generates reactive oxygen species (ROS), PANC-1 cells were treated with hydrogen peroxide (H2O2). H2O2 is a key member of ROS. METHODS To investigate the cell survival rate to X-ray irradiation, PANC-1 cells were irradiated with X-rays (2.5-15 Gy). LPAR2 expression levels were measured by quantitative real-time RT-PCR analysis. The effects of LPA2 on the cell survival and motility were evaluated using LPA2 knockdown cells. To establish H2O2 treated cells, PANC-1 cells were cultured in 10% FBS-DMEM with H2O2 (30 µM) for 2 weeks. The cell motility and survival rate to cisplatin (CDDP) of H2O2 treated cells were examined. RESULTS LPAR2 expression was significantly increased in PANC-1 cells irradiated with X-rays. PANC-1 cell motility was markedly decreased by X-ray irradiation. The reduced cell motility activity by X-ray irradiation was enhanced by LPA2 knockdown. The cell survival to X-ray irradiation was elevated in PANC-1 cells treated with GRI-977143 (LPA2 agonist) and suppressed by LPA2 knockdown. On the other hand, LPAR2 expression was markedly higher in H2O2 treated cells than in H2O2 untreated cells. H2O2 treated cells showed the high cell survival to CDDP in comparison with H2O2 untreated cells. GRI-977143 increased the cell survival to CDDP of H2O2 treated cells, while LPA2 knockdown suppressed. CONCLUSIONS The present results suggest that the activation of LPA2-mediated signaling plays an important role in the modulation of cellular functions induced by X-ray irradiation and H2O2 in PANC-1 cells.
Collapse
Affiliation(s)
- Aya Okuda
- Department of Life Science, Division of Molecular Oncology, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Miwa Takai
- Department of Life Science, Division of Molecular Oncology, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Rio Kurisu
- Department of Life Science, Division of Molecular Oncology, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Miyu Takamoto
- Department of Life Science, Division of Molecular Oncology, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Hiroko Ikeda
- Department of Life Science, Division of Molecular Oncology, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Toshifumi Tsujiuchi
- Department of Life Science, Division of Molecular Oncology, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| |
Collapse
|