1
|
Dash SR, Pandya R, Singh G, Sharma H, Das T, Haldar H, Hotha S, Vanka K. Unravelling the prebiotic origins of the simplest α-ketoacids in cometary ices: a computational investigation. Chem Commun (Camb) 2024; 60:11283-11286. [PMID: 39295450 DOI: 10.1039/d4cc03074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
We have employed the ab initio nanoreactor (AINR) and DFT calculations to explore how the soft impact of comets entering early earth's dense atmosphere could induce chemical reactions in trapped interstellar ice components, leading to the origin of glyoxylic and pyruvic acids the simplest α-ketoacids essential for prebiotic metabolic cycles.
Collapse
Affiliation(s)
- Soumya Ranjan Dash
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rinu Pandya
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Geetika Singh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - Himanshu Sharma
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tamal Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hritwik Haldar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India.
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India.
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Ferreira GW, Samulewski RB, Ivashita FF, Paesano A, Urbano A, Zaia DAM. Did Salts in Seawater Play an Important Role in the Adsorption of Molecules on Minerals in the Prebiotic Earth? The Case of the Adsorption of Thiocyanate onto Forsterite-91. ORIGINS LIFE EVOL B 2023; 53:127-156. [PMID: 37676558 DOI: 10.1007/s11084-023-09640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Thiocyanate may have played as important a role as cyanide in the synthesis of several molecules. However, its concentration in the seas of the prebiotic Earth could have been very low. Thiocyanate was dissolved in two different seawaters: a) a composition that comes close to the seawater of the prebiotic Earth (seawater-B, Ca2+ and Cl-) and b) a seawater (seawater-A, Mg2+ and SO42-) that could be related to the seas of Mars and other moons in the solar system. In addition, forsterite-91 was a very common mineral on the prebiotic Earth and Mars. Two important results are reported in this work: 1) thiocyanate adsorbed onto forsterite-91 and 2) the amount of thiocyanate adsorbed, adsorption thermodynamic, and adsorption kinetic depend on the composition of the artificial seawater. For all experiments, the adsorption was thermodynamically favorable (ΔG < 0). The adsorption data fitted well in the Freundlich and Langmuir-Freundlich models. When dissolving thiocyanate in seawater 4.0-A-Gy and seawater 4.0-B-Gy, the adsorption of thiocyanate onto forsterite-91 was ruled by enthalpy and entropy, respectively. As shown by n values, the thiocyanate/foraterite-91 system is heterogeneous. For all kinetic data, the pseudo-first-order model presented the best fit. The constant rate for thiocyanate dissolved in seawater 4.0-A-Gy was twice that compared to thiocyanate dissolved in seawater 4.0-B-Gy or ultrapure-water. The interaction between thiocyanate and Fe2+ of forsterite-91 was with the nitrogen atom of thiocyanate. In the presence of thiocyanate, sulfate interacts with forsterite-91 as an inner-sphere surface complex, and without thiocyanate as an outer-sphere surface complex.
Collapse
Affiliation(s)
- Giulio Wilgner Ferreira
- Laboratório de Química Prebiótica-LQP, Departamento de Química, Universidade Estadual de Londrina, CEP 86057-970, Londrina, PR, Brazil
| | - Rafael Block Samulewski
- COLIQ - Coordenação de Licenciatura em Química, Universidade Tecnológica Federal do Paraná UTFPR Campus Apucarana, CEP 86812-460, Apucarana, PR, Brazil.
| | | | - Andrea Paesano
- Departamento de Física-CCE, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brazil
- Departamento de Física Teórica e Experimental, UFRN, Av. Sen. Salgado Filho, 3000, Lagoa Nova, 59078-970, Natal, RN, Brazil
| | - Alexandre Urbano
- Departamento de Física-CCE, Universidade Estadual de Londrina, CEP 86057-970, Londrina, PR, Brazil
| | - Dimas Augusto Morozin Zaia
- Laboratório de Química Prebiótica-LQP, Departamento de Química, Universidade Estadual de Londrina, CEP 86057-970, Londrina, PR, Brazil.
| |
Collapse
|
3
|
Edalati K, Taniguchi I, Floriano R, Luchessi AD. Glycine amino acid transformation under impacts by small solar system bodies, simulated via high-pressure torsion method. Sci Rep 2022; 12:5677. [PMID: 35383225 PMCID: PMC8983748 DOI: 10.1038/s41598-022-09735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/28/2022] [Indexed: 11/15/2022] Open
Abstract
Impacts by small solar system bodies (meteoroids, asteroids, comets and transitional objects) are characterized by a combination of energy dynamics and chemical modification on both terrestrial and small solar system bodies. In this context, the discovery of glycine amino acid in meteorites and comets has led to a hypothesis that impacts by astronomical bodies could contribute to delivery and polymerization of amino acids in the early Earth to generate proteins as essential molecules for life. Besides the possibility of abiotic polymerization of glycine, its decomposition by impacts could generate reactive groups to form other essential organic biomolecules. In this study, the high-pressure torsion (HPT) method, as a new platform for simulation of impacts by small solar system bodies, was applied to glycine. In comparison with high-pressure shock experiments, the HPT method simultaneously introduces high pressure and deformation strain. It was found that glycine was not polymerized in the experimental condition assayed, but partially decomposed to ethanol under pressures of 1 and 6 GPa and shear strains of < 120 m/m. The detection of ethanol implies the inherent availability of remaining nitrogen-containing groups, which can incorporate to the formation of other organic molecules at the impact site. In addition, this finding highlights a possibility of the origin of ethanol previously detected in comets.
Collapse
Affiliation(s)
- Kaveh Edalati
- WPI International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan.
| | - Ikuo Taniguchi
- WPI International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan
| | - Ricardo Floriano
- School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Augusto Ducati Luchessi
- School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| |
Collapse
|
4
|
Singh SV, Vishakantaiah J, Meka JK, Sivaprahasam V, Chandrasekaran V, Thombre R, Thiruvenkatam V, Mallya A, Rajasekhar BN, Muruganantham M, Datey A, Hill H, Bhardwaj A, Jagadeesh G, Reddy KPJ, Mason NJ, Sivaraman B. Shock Processing of Amino Acids Leading to Complex Structures-Implications to the Origin of Life. Molecules 2020; 25:molecules25235634. [PMID: 33265981 PMCID: PMC7730583 DOI: 10.3390/molecules25235634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The building blocks of life, amino acids, are believed to have been synthesized in the extreme conditions that prevail in space, starting from simple molecules containing hydrogen, carbon, oxygen and nitrogen. However, the fate and role of amino acids when they are subjected to similar processes largely remain unexplored. Here we report, for the first time, that shock processed amino acids tend to form complex agglomerate structures. Such structures are formed on timescales of about 2 ms due to impact induced shock heating and subsequent cooling. This discovery suggests that the building blocks of life could have self-assembled not just on Earth but on other planetary bodies as a result of impact events. Our study also provides further experimental evidence for the ‘threads’ observed in meteorites being due to assemblages of (bio)molecules arising from impact-induced shocks.
Collapse
Affiliation(s)
- Surendra V. Singh
- Atomic Molecular and Optical Physics Division, Physical Research Laboratory, Ahmedabad 380009, India; (S.V.S.); (J.K.M.)
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India
| | - Jayaram Vishakantaiah
- Solid State & Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India;
| | - Jaya K. Meka
- Atomic Molecular and Optical Physics Division, Physical Research Laboratory, Ahmedabad 380009, India; (S.V.S.); (J.K.M.)
| | - Vijayan Sivaprahasam
- Planetary Science Division, Physical Research Laboratory, Ahmedabad 380009, India; (V.S.); (A.B.)
| | | | - Rebecca Thombre
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Pune 411005, India;
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India;
| | - Ambresh Mallya
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | | | | | - Akshay Datey
- Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India; (A.D.); (G.J.); (K.P.J.R.)
| | - Hugh Hill
- Physical Sciences, International Space University, 67400 Illkirch-Graffenstaden, France;
| | - Anil Bhardwaj
- Planetary Science Division, Physical Research Laboratory, Ahmedabad 380009, India; (V.S.); (A.B.)
| | - Gopalan Jagadeesh
- Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India; (A.D.); (G.J.); (K.P.J.R.)
| | - Kalidevapura P. J. Reddy
- Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India; (A.D.); (G.J.); (K.P.J.R.)
| | - Nigel J. Mason
- School of Physical Sciences, University of Kent, Canterbury CT2 7NZ, UK
- Correspondence: (N.J.M.); (B.S.)
| | - Bhalamurugan Sivaraman
- Atomic Molecular and Optical Physics Division, Physical Research Laboratory, Ahmedabad 380009, India; (S.V.S.); (J.K.M.)
- Correspondence: (N.J.M.); (B.S.)
| |
Collapse
|
5
|
Racemization of Valine by Impact-Induced Heating. ORIGINS LIFE EVOL B 2017; 48:131-139. [PMID: 28484901 DOI: 10.1007/s11084-017-9539-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/25/2017] [Indexed: 11/25/2022]
Abstract
Homochirality plays an important role in all living organisms but its origin remains unclear. It also remains unclear whether such chiral molecules survived terrestrial heavy impact events. Impacts of extraterrestrial objects on early oceans were frequent and could have affected the chirality of oceanic amino acids when such amino acids accumulated during impacts. This study investigated the effects of shock-induced heating on enantiomeric change of valine with minerals such as olivine ([Mg0.9, Fe0.1]2SiO4), hematite (Fe2O3), and calcite (CaCO3). With a shock wave generated by an impact at ~0.8 km/s, both D- and L-enriched valine were significantly decomposed and partially racemized under all experimental conditions. Different minerals had different shock impedances; therefore, they provided different P-T conditions for identical impacts. Furthermore, the high pH of calcite promoted the racemization of valine. The results indicate that in natural hypervelocity impacts, amino acids in shocked oceanic water would have decomposed completely, since impact velocity and the duration of shock compression and heating are typically greater in hypervelocity impact events than those in experiments. Even with the shock wave by the impact of small and decelerated projectiles in which amino acids survive, the shock heating may generate sufficient heat for significant racemization in shocked oceanic water. However, the duration of shock induced heating by small projectiles is limited and the population of such decelerated projectiles would be limited. Therefore, even though impacts of asteroids and meteorites were frequent on the prebiotic Earth, impact events would not have significantly changed the ee of proteinogenic amino acids accumulated in the entire ocean.
Collapse
|
6
|
Shimamura K, Shimojo F, Nakano A, Tanaka S. Meteorite impacts on ancient oceans opened up multiple NH 3 production pathways. Phys Chem Chem Phys 2017; 19:11655-11667. [PMID: 28435960 DOI: 10.1039/c7cp00870h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A recent series of shock experiments by Nakazawa et al. starting in 2005 (e.g. [Nakazawa et al., Earth Planet. Sci. Lett., 2005, 235, 356]) suggested that meteorite impacts on ancient oceans would have yielded a considerable amount of NH3 to the early Earth from atmospheric N2 and oceanic H2O through reduction by meteoritic iron. To clarify the mechanisms, we imitated the impact events by performing multi-scale shock technique-based ab initio molecular dynamics in the framework of density functional theory in combination with multi-scale shock technique (MSST) simulations. Our previous simulations with impact energies close to that of the experiments revealed picosecond-order rapid NH3 production during shock compression [Shimamura et al., Sci. Rep., 2016, 6, 38952]. It was also shown that the reduction of N2 took place with an associative mechanism as seen in the catalysis of nitrogenase enzymes. In this study, we performed an MSST-AIMD simulation to investigate the production by meteorite impacts with higher energies, which are closer to the expected values on the early Earth. It was found that the amount of NH3 produced further increased. We also found that the increased NH3 production is due to the emergence of multiple reaction mechanisms at increased impact energies. We elucidated that the reduction of N2 was not only attributed to the associative mechanism but also to a dissociative mechanism as seen in the Haber-Bosch process and to a mechanism through a hydrazinium ion. The emergence of these multiple production mechanisms capable of providing a large amount of NH3 would support the suggestions from recent experiments much more strongly than was previously believed, i.e., shock-induced NH3 production played a key role in the origin of life on Earth.
Collapse
Affiliation(s)
- Kohei Shimamura
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.
| | | | | | | |
Collapse
|