1
|
Yang J, Zhang S, Zhang Y, Zhao D, Liu T, Sun X, Yan L. Phenomic and transcriptomic analyses reveal the sequential synthesis of Fe 3O 4 nanoparticles in Acidithiobacillus ferrooxidans BYM. Microbiol Spectr 2023; 11:e0172923. [PMID: 37800960 PMCID: PMC10714799 DOI: 10.1128/spectrum.01729-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/17/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE As the most important non-magnetotactic magnetosome-producing bacteria, Acidithiobacillus ferrooxidans only requires very mild conditions to produce Fe3O4 nanoparticles, thus conferring greater flexibility and potential application in biomagnetic nanoparticle production. However, the available information cannot explain the mechanism of Fe3O4 nanoparticle formation in A. ferrooxidans. In this study, we applied phenomic and transcriptomic analyses to reveal this mechanism. We found that different treatment condition factors notably affect the phenomic data of Fe3O4 nanoparticle in A. ferrooxidans. Using transcriptomic analyses, the gene network controlling/regulating Fe3O4 nanoparticle biogenesis in A. ferrooxidans was proposed, excavating the candidate hub genes for Fe3O4 nanoparticle formation in A. ferrooxidans. Based on this information, a sequential model for Fe3O4 nanoparticle synthesis in A. ferrooxidans was hypothesized. It lays the groundwork for further clarifying the feature of Fe3O4 nanoparticle synthesis.
Collapse
Affiliation(s)
- Jiani Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yu Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Xindi Sun
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| |
Collapse
|
2
|
Zhang G, Liu T, Zhao D, Sun X, Xing W, Zhang S, Yan L. External magnetic field have significant effects on diversity of magnetotactic bacteria in sediments from Yangtze River, Chagan Lake and Zhalong Wetland in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115604. [PMID: 37871562 DOI: 10.1016/j.ecoenv.2023.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
Magnetotactic bacteria (MTB) can rapidly relocate to optimal habitats by magnetotaxis, and play an important role in iron biogeochemical cycling. This study aimed to evaluate the contribution of the external magnetostatic field to the diversity of MTB in freshwater sediments from Yangtze River (Changjiang River, CJ), Chagan Lake (CGH) and Zhalong Wetland (ZL). The magnetic field intensity was tightly associated with the community richness of MTB in CJ, whereas it was closely related to the diversity of MTB in CGH and ZL (p < 0.05), elucidating a significant variation in the community composition of MTB. Magnetic exposure time appeared more significant correlation with community richness than diversity for MTB in CJ and CGH (p < 0.05), while an opposite relationship existed in ZL (p < 0.01). Herbaspirillum (93.81-96.48 %) dominated in the sediments of these surfacewatesr regardless of waterbody types, while it shifted to Magnetospirillum in ZL under 100 Gs magnetic field. The network connectivity and stability of MTB deteriorate with the increase of magnetic field intensity. Functional analysis showed that the Two-component system and ABC transporter system of MTB obviously responded to magnetic field intensity and exposure time. Our findings will pave the way to understanding the response mechanism of MTB community in freshwater sediments to the external magnetostatic field.
Collapse
Affiliation(s)
- Guojing Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Key Laboratory of Low‑Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Xindi Sun
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Weijia Xing
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Key Laboratory of Low‑Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China.
| |
Collapse
|
3
|
Ma Y, Guo F, Zhang Y, Sun X, Wen T, Jiang W. OxyR-Like Improves Cell Hydrogen Peroxide Tolerance by Participating in Monocyte Chemotaxis and Oxidative Phosphorylation Regulation in Magnetospirillum Gryphiswaldense MSR-1. J Biomed Nanotechnol 2021; 17:2466-2476. [PMID: 34974869 DOI: 10.1166/jbn.2021.3205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The formation of magnetosomes inside magnetotactic bacteria is a complex process strictly controlled by the intracellular metabolic regulatory system. A series of transcriptional regulators are involved in the biosynthesis of the magnetosome, including OxyR-Like protein, which is indispensable for the maturation of magnetosomes in Magnetospirillum Gryphiswaldense MSR-1. In this study, a new function of the OxyR-Like protein that helps cells resist reactive oxygen species (ROS) was identified. A comparison of expression profile data between wild-type MSR-1 and an oxyR-Like defective mutant demonstrated that seven genes encoding chemotaxis proteins were down-regulated in the latter. On the contrary, the expression levels of numerous genes encoding proteins that are critical for cellular aerobic respiration were up-regulated. Thus, OxyR-Like enhanced the resistance of cells to ROS by increasing their environmental perception and maintaining their oxidative phosphorylation at a reasonable level to avoid the excessive production of endogenous ROS. These results increase our knowledge of the OxyR-Like regulatory network and establish a relationship between the antioxidant metabolic pathway and magnetosome biomineralization in MSR-1.
Collapse
Affiliation(s)
- Yong Ma
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yunpeng Zhang
- Agricultural Utilization Research Center, Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Xiuyu Sun
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Tong Wen
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Wei Jiang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
A Theoretical Analysis of Magnetic Particle Alignment in External Magnetic Fields Affected by Viscosity and Brownian Motion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The interaction of an external magnetic field with magnetic objects affects their response and is a fundamental property for many biomedical applications, including magnetic resonance and particle imaging, electromagnetic hyperthermia, and magnetic targeting and separation. Magnetic alignment and relaxation are widely studied in the context of these applications. In this study, we theoretically investigate the alignment dynamics of a rotational magnetic particle as an inverse process to Brownian relaxation. The selected external magnetic flux density ranges from 5μT to 5T. We found that the viscous torque for arbitrary rotating particles with a history term due to the inertia and friction of the surrounding ambient water has a significant effect in strong magnetic fields (range 1–5T). In this range, oscillatory behavior due to the inertial torque of the particle also occurs, and the stochastic Brownian torque diminishes. In contrast, for weak fields (range 5–50μT), the history term of the viscous torque and the inertial torque can be neglected, and the stochastic Brownian torque induced by random collisions of the surrounding fluid molecules becomes dominant. These results contribute to a better understanding of the molecular mechanisms of magnetic particle alignment in external magnetic fields and have important implications in a variety of biomedical applications.
Collapse
|
5
|
Kralj S, Marchesan S. Bioinspired Magnetic Nanochains for Medicine. Pharmaceutics 2021; 13:1262. [PMID: 34452223 PMCID: PMC8398308 DOI: 10.3390/pharmaceutics13081262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used for medicine, both in therapy and diagnosis. Their guided assembly into anisotropic structures, such as nanochains, has recently opened new research avenues; for instance, targeted drug delivery. Interestingly, magnetic nanochains do occur in nature, and they are thought to be involved in the navigation and geographic orientation of a variety of animals and bacteria, although many open questions on their formation and functioning remain. In this review, we will analyze what is known about the natural formation of magnetic nanochains, as well as the synthetic protocols to produce them in the laboratory, to conclude with an overview of medical applications and an outlook on future opportunities in this exciting research field.
Collapse
Affiliation(s)
- Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|