1
|
Yong C, Li Y, Bi T, Chen G, Zheng D, Wang Z, Zhang Y. Research Progress on the Synthesis and Activity of D-Galactose Derived Small Galectin Inhibitors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Gu M, Mei X, Zhao Y. Galectins as potential pharmacological targets in renal injuries of diverse etiology. Eur J Pharmacol 2020; 881:173213. [PMID: 32450176 DOI: 10.1016/j.ejphar.2020.173213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
Galectins are carbohydrate-binding proteins, and their importance in renal diseases of diverse etiology has been documented. Amongst different galectins, the role of galectin-3 in the pathophysiology of renal diseases has been well documented. There is an increase in galectin-3 in the circulation as well as on the kidneys in chronic kidney disease patients. The increase in galectin-3 is negatively correlated with a decrease in renal function and overall survival rate. The preclinical studies also correlate the increase in galectin-3 levels with renal dysfunction. Accordingly, scientists have exploited galectin-3 as a potential pharmacological target to improve renal functions in different preclinical models of renal injury. Apart from galectin-3, there have been few studies documenting the role of galectin-1, 8, and 9 in renal diseases. The role of galectin-1 is not clearly identified, and there have been conflicting reports regarding its role in renal diseases. Galectin-8 and 9 impart renoprotective effects as per clinical and preclinical studies, respectively. The present review discusses the role of different galectins in renal diseases of diverse etiology.
Collapse
Affiliation(s)
- Ming Gu
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Xianglin Mei
- Department of Pathology, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Yanan Zhao
- Neurology Department, China-Japan Union Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
3
|
Miura Y, Hashii N, Ohta Y, Itakura Y, Tsumoto H, Suzuki J, Takakura D, Abe Y, Arai Y, Toyoda M, Kawasaki N, Hirose N, Endo T. Characteristic glycopeptides associated with extreme human longevity identified through plasma glycoproteomics. Biochim Biophys Acta Gen Subj 2018; 1862:1462-1471. [PMID: 29580922 DOI: 10.1016/j.bbagen.2018.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/07/2018] [Accepted: 03/21/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Glycosylation is highly susceptible to changes of the physiological conditions, and accordingly, is a potential biomarker associated with several diseases and/or longevity. Semi-supercentenarians (SSCs; older than 105 years) are thought to be a model of human longevity. Thus, we performed glycoproteomics using plasma samples of SSCs, and identified proteins and conjugated N-glycans that are characteristic of extreme human longevity. METHODS Plasma proteins from Japanese semi-supercentenarians (SSCs, 106-109 years), aged controls (70-88 years), and young controls (20-38 years) were analysed by using lectin microarrays and liquid chromatography/mass spectrometry (LC/MS). Peak area ratios of glycopeptides to corresponding normalising peptides were subjected to orthogonal projections to latent structures discriminant analysis (OPLS-DA). Furthermore, plasma levels of clinical biomarkers were measured. RESULTS We found two lectins such as Phaseolus vulgaris, and Erythrina cristagalli (ECA), of which protein binding were characteristically increased in SSCs. Peak area ratios of ECA-enriched glycopeptides were successfully discriminated between SSCs and controls using OPLS-DA, and indicated that tri-antennary and sialylated N-glycans of haptoglobin at Asn207 and Asn211 sites were characterized in SSCs. Sialylated glycans of haptoglobin are a potential biomarker of several diseases, such as hepatocellular carcinoma, liver cirrhosis, and IgA-nephritis. However, the SSCs analysed here did not suffer from these diseases. CONCLUSIONS Tri-antennary and sialylated N-glycans on haptoglobin at the Asn207 and Asn211 sites were abundant in SSCs and characteristic of extreme human longevity. GENERAL SIGNIFICANCE We found abundant glycans in SSCs, which may be associated with human longevity.
Collapse
Affiliation(s)
- Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Yuki Ohta
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Yoko Itakura
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Junya Suzuki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Daisuke Takakura
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Yukiko Abe
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Nana Kawasaki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tamao Endo
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
4
|
Saccon F, Gatto M, Ghirardello A, Iaccarino L, Punzi L, Doria A. Role of galectin-3 in autoimmune and non-autoimmune nephropathies. Autoimmun Rev 2016; 16:34-47. [PMID: 27666815 DOI: 10.1016/j.autrev.2016.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023]
Abstract
Galectins are evolutionary conserved β-galactoside binding proteins with a carbohydrate-recognition domain (CRD) of approximately 130 amino acids. In mammals, 15 members of the galectin family have been identified and classified into three subtypes according to CRD organization: prototype, tandem repeat-type and chimera-type galectins. Galectin-3 (gal-3) is the only chimera type galectin in vertebrates containing one CRD linked to an unusual long N-terminal domain which displays non-lectin dependent activities. Although recent studies revealed unique, pleiotropic and context-dependent functions of gal-3 in both extracellular and intracellular space, gal-3 specific pathways and its ligands have not been clearly defined yet. In the kidney gal-3 is involved in later stages of nephrogenesis as well as in renal cell cancer. However, gal-3 has recently been associated with lupus glomerulonephritis, with Familial Mediterranean Fever-induced proteinuria and renal amyloidosis. Gal-3 has been studied in experimental acute kidney damage and in the subsequent regeneration phase as well as in several models of chronic kidney disease, including nephropathies induced by aging, ischemia, hypertension, diabetes, hyperlipidemia, unilateral ureteral obstruction and chronic allograft injury. Because of the pivotal role of gal-3 in the modulation of immune system, wound repair, fibrosis and tumorigenesis, it is not surprising that gal-3 can be an intriguing prognostic biomarker as well as a promising therapeutic target in a great variety of diseases, including chronic kidney disease, chronic heart failure and cardio-renal syndrome. This review summarizes the functions of gal-3 in kidney pathophysiology focusing on the reported role of gal-3 in autoimmune diseases.
Collapse
Affiliation(s)
- Francesca Saccon
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Mariele Gatto
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Anna Ghirardello
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Luca Iaccarino
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Leonardo Punzi
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy
| | - Andrea Doria
- Division of Rheumatology, Department of Medicine (DIMED), University of Padova, Italy.
| |
Collapse
|
5
|
Tan R, Liu X, Wang J, Lu P, Han Z, Tao J, Yin C, Gu M. Alternations of galectin levels after renal transplantation. Clin Biochem 2014; 47:83-8. [PMID: 24984218 DOI: 10.1016/j.clinbiochem.2014.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 05/09/2014] [Accepted: 06/20/2014] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Galectins (gals), a growing family of β-galactoside-binding animal lectins, have been implicated in a variety of biological processes including fibrosis, angiogenesis, and immune activation, all of which are involved in hemodialysis (HD) and renal transplantation (RTx). In this study, we aimed to investigate serum gal levels in HD and RTx recipients. DESIGN AND METHODS 41 normal subjects, 41 RTx recipients and 32 HD patients were recruited for this study. RTx recipients were evaluated before transplantation as well as 3 months afterwards. Serum gals-1, 2, 3, 4, 8, and 9 were measured both at baseline and 3 months later in each group. RESULTS At baseline, there were no differences in gals-1, 2, 3, 4, 8, and 9 between the RTx and HD groups. However, the levels of gals-1, 2, 3, 8, and 9 in the RTx and HD groups were higher than that of normal subjects. In paired analyses, gals-1, 2, and 3 were significantly decreased in RTx patients (P<0.0001) at 3 months, while there was no change in the HD group. However, levels of gals-4, 8, and 9 did not significantly change in either the HD or RTx group. CONCLUSION Gal-1, 2, and 3 levels were high in maintenance HD patients. Kidney transplantation improved gal-1, 2, and 3 levels.
Collapse
Affiliation(s)
- Ruoyun Tan
- Department of Urology, Jiangsu Province Hospital, No. 300 Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Xuzhong Liu
- Department of Urology, Jiangsu Province Hospital, No. 300 Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Jun Wang
- Department of Urology, Jiangsu Province Hospital, No. 300 Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Pei Lu
- Department of Urology, Jiangsu Province Hospital, No. 300 Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Zhijian Han
- Department of Urology, Jiangsu Province Hospital, No. 300 Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Jun Tao
- Department of Urology, Jiangsu Province Hospital, No. 300 Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Changjun Yin
- Department of Urology, Jiangsu Province Hospital, No. 300 Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Min Gu
- Department of Urology, Jiangsu Province Hospital, No. 300 Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China.
| |
Collapse
|