1
|
Kopij G, Kiezun M, Dobrzyn K, Zaobidna E, Zarzecka B, Rak A, Kaminski T, Kaminska B, Smolinska N. Visfatin Affects the Transcriptome of Porcine Luteal Cells during Early Pregnancy. Int J Mol Sci 2024; 25:2339. [PMID: 38397019 PMCID: PMC10889815 DOI: 10.3390/ijms25042339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Visfatin/NAMPT (VIS), the hormone exerting a pleiotropic effect, is also perceived as an important factor in the regulation of reproductive processes and pregnancy maintenance. Previous studies confirmed its involvement in the control of porcine pituitary and ovary function. In this study, we hypothesized that VIS may affect the global transcriptome of luteal cells and thus regulate the functioning of the ovaries. Illumina's NovaSeq 6000 RNA sequencing was performed to investigate the differentially expressed genes (DEGs) and long non-coding RNAs (DELs) as well as the occurrence of differential alternative splicing events (DASs) in the porcine luteal cells exposed to VIS (100 ng/mL) during the implantation period. The obtained results revealed 170 DEGs (99 up- and 71 downregulated) assigned to 45 functional annotations. Moreover, we revealed 40 DELs, of which 3 were known and 37 were described for the first time. We identified 169 DASs events. The obtained results confirmed a significant effect of VIS on the transcriptome and spliceosome of luteal cells, including the genes involved in the processes crucial for successful implantation and pregnancy maintenance as angiogenesis, steroidogenesis, inflammation, cell development, migration, and proliferation.
Collapse
Affiliation(s)
- Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Kaminska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| |
Collapse
|
2
|
Safari Vejin T, Zepeda ME, Yglesias BS, Devito P. Newfound features associated with Hennekam Syndrome ( Intestinal Lymphangiectasia-Lymphedema-Intellectual-Disability Syndrome) complicated with comorbid Waldmann's Disease resulting in Celiac Disease. Clin Case Rep 2023; 11:e7891. [PMID: 38028107 PMCID: PMC10651965 DOI: 10.1002/ccr3.7891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 12/01/2023] Open
Abstract
Key Clinical Message Adequate evaluation of patients with Hennekam Syndrome (HS) is challenging for physicians, because of multi-organ involvement and complex pathophysiology. We report the first case in an African American with lymphedema, who developed protein-losing enteropathy (PLE) and was successfully diagnosed with HS from cause-and-effect complications by Waldmann's Disease (WD) and comorbid Celiac Disease (CD). Abstract As far as we know, this is the 51st case of HS worldwide and the first one in an African American. The examined patient met all diagnostic criteria for HS, suggesting a dysfunction in the development of the lymphatic system, with associated comorbidities including developmental delay, gastrointestinal pathologies, facial and hearing abnormalities, and cardiac defects. Primary intestinal lymphangiectasia (WD) is a consequence of HS, which ultimately results in PLE and worsening interstitial lymph buildup. Based on our findings, CD, a complication not yet reported in HS, may arise from WD. Other autoimmune diseases may be seen in HS: a previous report demonstrated positive anti-thyroid stimulating hormone antibodies in HS patients. We propose that in HS, increased interstitial lymph (WD, if intestinal) with protein loss induces TNF-α- and IL-6-mediated immune reactions in the affected visceral organs, causing autoimmune pathologies. The interstitial lymph fluid-induced TNF-α and IL-6-mediated immunopathogenic reactions lead to inflammation and subsequent destruction of the intestinal mucosa. The chronic inflammatory increase in TGF-β causes gastric mucosa hypertrophy, which results in gastric fold thickening. Eventually, wider tight junctions develop, increasing gastric mucosa permeability, and leading to gastropathy. Considering the examined patient's history of gastroenteritis and the literature stating that CD is a non-mucosal cause of gastropathy and PLE, it is suggested that sequelae of GI complications occur in a cause-and-effect chain in HS. HS results in WD, which causes CD, resulting in hypertrophic gastropathy and loss of parietal and chief cells, eventually leading to malabsorption and PLE (Figure 1). HS primarily affects various organs due to inflammatory-mediated damage and accumulation of lymph fluid. Other findings for HS include keratoconjunctivitis sicca (dry eye disease), fibrous lymphedema exhibiting lymphorrhea, chylous ascites, anemia, and parathyroid abnormalities. Immune impairment in HS predisposes patients to autoimmune disorders, therefore autoimmunity (CD) and WD are concomitant comorbidities of HS. HS-associated comorbidities are primarily due to inflammation and damage to immune cell transport or underlying health conditions affecting proper lymphatic function. However, it is suggested that HS mutations may disrupt the development of the lymphatic system leading to further complication. complications can be compound heterozygous, and there is a need for further research to identify nearby genes that can cause concomitant co-morbidity.
Collapse
Affiliation(s)
- Tannaz Safari Vejin
- Department of SurgeryTrumbull Regional Medical CenterWarrenOhioUSA
- AUA College and MedicineAntigua and Barbuda
| | | | | | - Peter Devito
- Department of SurgeryTrumbull Regional Medical CenterWarrenOhioUSA
| |
Collapse
|
3
|
Martin-Almedina S, Mortimer PS, Ostergaard P. Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema. Physiol Rev 2021; 101:1809-1871. [PMID: 33507128 DOI: 10.1152/physrev.00006.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
4
|
Shinwari K, Guojun L, Deryabina SS, Bolkov MA, Tuzankina IA, Chereshnev VA. Predicting the Most Deleterious Missense Nonsynonymous Single-Nucleotide Polymorphisms of Hennekam Syndrome-Causing CCBE1 Gene, In Silico Analysis. ScientificWorldJournal 2021; 2021:6642626. [PMID: 34234628 PMCID: PMC8211529 DOI: 10.1155/2021/6642626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
Hennekam lymphangiectasia-lymphedema syndrome has been linked to single-nucleotide polymorphisms in the CCBE1 (collagen and calcium-binding EGF domains 1) gene. Several bioinformatics methods were used to find the most dangerous nsSNPs that could affect CCBE1 structure and function. Using state-of-the-art in silico tools, this study examined the most pathogenic nonsynonymous single-nucleotide polymorphisms (nsSNPs) that disrupt the CCBE1 protein and extracellular matrix remodeling and migration. Our results indicate that seven nsSNPs, rs115982879, rs149792489, rs374941368, rs121908254, rs149531418, rs121908251, and rs372499913, are deleterious in the CCBE1 gene, four (G330E, C102S, C174R, and G107D) of which are the highly deleterious, two of them (G330E and G107D) have never been seen reported in the context of Hennekam syndrome. Twelve missense SNPs, rs199902030, rs267605221, rs37517418, rs80008675, rs116596858, rs116675104, rs121908252, rs147974432, rs147681552, rs192224843, rs139059968, and rs148498685, are found to revert into stop codons. Structural homology-based methods and sequence homology-based tools revealed that 8.8% of the nsSNPs are pathogenic. SIFT, PolyPhen2, M-CAP, CADD, FATHMM-MKL, DANN, PANTHER, Mutation Taster, LRT, and SNAP2 had a significant score for identifying deleterious nsSNPs. The importance of rs374941368 and rs200149541 in the prediction of post-translation changes was highlighted because it impacts a possible phosphorylation site. Gene-gene interactions revealed CCBE1's association with other genes, showing its role in a number of pathways and coexpressions. The top 16 deleterious nsSNPs found in this research should be investigated further in the future while researching diseases caused CCBE1 gene specifically HS. The FT web server predicted amino acid residues involved in the ligand-binding site of the CCBE1 protein, and two of the substitutions (R167W and T153N) were found to be involved. These highly deleterious nsSNPs can be used as marker pathogenic variants in the mutational diagnosis of the HS syndrome, and this research also offers potential insights that will aid in the development of precision medicines. CCBE1 proteins from Hennekam syndrome patients should be tested in animal models for this purpose.
Collapse
Affiliation(s)
- Khyber Shinwari
- Department of Immunochemistry, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russia
| | - Liu Guojun
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Svetlana S. Deryabina
- Department of Immunochemistry, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russia
- Medical Center Healthcare of Mother and Child, Yekaterinburg, Russia
| | - Mikhail A. Bolkov
- Department of Immunochemistry, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russia
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina A. Tuzankina
- Department of Immunochemistry, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russia
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Valery A. Chereshnev
- Department of Immunochemistry, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russia
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
5
|
Souza MR, Ibelli AMG, Savoldi IR, Cantão ME, Peixoto JDO, Mores MAZ, Lopes JS, Coutinho LL, Ledur MC. Transcriptome analysis identifies genes involved with the development of umbilical hernias in pigs. PLoS One 2020; 15:e0232542. [PMID: 32379844 PMCID: PMC7205231 DOI: 10.1371/journal.pone.0232542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Umbilical hernia (UH) is one of the most frequent defects affecting pig production, however, it also affects humans and other mammals. UH is characterized as an abnormal protrusion of the abdominal contents to the umbilical region, causing pain, discomfort and reduced performance in pigs. Some genomic regions associated to UH have already been identified, however, no study involving RNA sequencing was performed when umbilical tissue is considered. Therefore, here, we have sequenced the umbilical ring transcriptome of five normal and five UH-affected pigs to uncover genes and pathways involved with UH development. A total of 13,216 transcripts were expressed in the umbilical ring tissue. From those, 230 genes were differentially expressed (DE) between normal and UH-affected pigs (FDR <0.05), being 145 downregulated and 85 upregulated in the affected compared to the normal pigs. A total of 68 significant biological processes were identified and the most relevant were extracellular matrix, immune system, anatomical development, cell adhesion, membrane components, receptor activation, calcium binding and immune synapse. The results pointed out ACAN, MMPs, COLs, EPYC, VIT, CCBE1 and LGALS3 as strong candidates to trigger umbilical hernias in pigs since they act in the extracellular matrix remodeling and in the production, integrity and resistance of the collagen. We have generated the first transcriptome of the pig umbilical ring tissue, which allowed the identification of genes that had not yet been related to umbilical hernias in pigs. Nevertheless, further studies are needed to identify the causal mutations, SNPs and CNVs in these genes to improve our understanding of the mechanisms of gene regulation.
Collapse
Affiliation(s)
- Mayla Regina Souza
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
| | | | - Igor Ricardo Savoldi
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
| | | | | | | | | | - Luiz Lehmann Coutinho
- Laboratório de Biotecnologia Animal, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste, Universidade do Estado de Santa Catarina, UDESC, Chapecó, Santa Catarina, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
| |
Collapse
|
6
|
Ozen A. CHAPLE syndrome uncovers the primary role of complement in a familial form of Waldmann's disease. Immunol Rev 2019; 287:20-32. [PMID: 30565236 DOI: 10.1111/imr.12715] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022]
Abstract
Primary intestinal lymphangiectasia (PIL) or Waldmann's disease was described in 1961 as an important cause of protein-losing enteropathy (PLE). PIL can be the sole finding in rare individuals or occur as part of a multisystemic genetic syndrome. Although genetic etiologies of many lymphatic dysplasia syndromes associated with PIL have been identified, the pathogenesis of isolated PIL (with no associated syndromic features) remains unknown. Familial cases and occurrence at birth suggest genetic etiologies in certain cases. Recently, CD55 deficiency with hyperactivation of complement, angiopathic thrombosis, and PLE (the CHAPLE syndrome) has been identified as a monogenic form of PIL. Surprisingly, loss of CD55, a key regulator of complement system leads to a predominantly gut condition. Similarly to other complement disorders, namely paroxysmal nocturnal and hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS), CHAPLE disease involves pathogenic cross-activation of the coagulation system, predisposing individuals to severe thrombosis. The observation that complement system is overly active in CHAPLE disease introduced a novel concept into the management of PLE; anti-complement therapy. While CD55 deficiency constitutes a treatable subgroup in the larger pool of patients with isolated PIL, the etiology remains to be identified in the remaining patients with intact CD55.
Collapse
Affiliation(s)
- Ahmet Ozen
- Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey.,The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
| |
Collapse
|
7
|
Melber DJ, Andreasen TS, Mao R, Tvrdik T, Miller CE, Moore TR, Woelkers DA, Lamale‐Smith LM. Novel mutation in CCBE 1 as a cause of recurrent hydrops fetalis from Hennekam lymphangiectasia-lymphedema syndrome-1. Clin Case Rep 2018; 6:2358-2363. [PMID: 30564329 PMCID: PMC6293140 DOI: 10.1002/ccr3.1804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/28/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Whole exome sequencing (WES) was used to determine the etiology of recurrent hydrops fetalis in this case of Hennekam lymphangiectasia-lymphedema syndrome-1. WES is a useful approach for diagnosing rare single-gene conditions with nonspecific phenotypes and should be considered early in the diagnostic process of investigating fetal abnormalities.
Collapse
Affiliation(s)
- Dora J. Melber
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of California San DiegoLa JollaCalifornia
| | - Tara S. Andreasen
- Division of GeneticsDepartment of PediatricsUniversity of California San DiegoLa JollaCalifornia
| | - Rong Mao
- Department of PathologyUniversity of UtahSalt Lake CityUtah
- ARUP LaboratoriesSalt Lake CityUtah
| | - Tatiana Tvrdik
- Department of PathologyUniversity of UtahSalt Lake CityUtah
- ARUP LaboratoriesSalt Lake CityUtah
| | | | - Thomas R. Moore
- Division of Maternal‐Fetal MedicineDepartment of Obstetrics, Gynecology, and Reproductive SciencesUniversity of California San DiegoLa JollaCalifornia
| | - Douglas A. Woelkers
- Division of Maternal‐Fetal MedicineDepartment of Obstetrics, Gynecology, and Reproductive SciencesUniversity of California San DiegoLa JollaCalifornia
| | - Leah M. Lamale‐Smith
- Division of Maternal‐Fetal MedicineDepartment of Obstetrics, Gynecology, and Reproductive SciencesUniversity of California San DiegoLa JollaCalifornia
| |
Collapse
|
8
|
Zhao YR, Liu H, Xiao LM, Jin CG, Zhang ZP, Yang CG. The clinical significance of CCBE1 expression in human colorectal cancer. Cancer Manag Res 2018; 10:6581-6590. [PMID: 30555263 PMCID: PMC6280897 DOI: 10.2147/cmar.s181770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose The identification and discovery of prognostic markers for colorectal cancer (CRC) are of great clinical significance. CCBE1 is expressed in various tumors and its expression correlates with lymphangiogenesis and angiogenesis. However, the association between CCBE1 expression and CRC outcome has not been reported. The aim of this study was to investigate clinical significance of CCBE1 expression in CRC. Patients and methods CCBE1 expression was examined in 30 pairs of fresh CRC tissues and compared with adjacent normal (AN) tissues using quantitative real-time PCR (qRT-PCR), Western blotting and immunohistochemistry (IHC) staining. Tissue microarray immunohistochemical staining was used to study the CCBE1 expression characteristics of 204 CRC patient samples collected from January 2002 to December 2007, and the relationship of CCBE1 with clinicopathological features and prognosis of CRC was analyzed. Results CCBE1 was highly expressed in CRC tissues compared with matched AN tissues (P=0.001). Moreover, high expression of CCBE1 was significantly associated with tumor differentiation, lymph node metastasis, vascular invasion, liver metastasis and TNM stage in CRC patients (P≤0.01). Kaplan-Meier survival analysis revealed that high CCBE1 expression, poor tumor differentiation, lymph node metastasis and vascular invasion were significantly associated (all P<0.001) with poor prognosis for patients. Furthermore, univariate and multivariate Cox analysis revealed that high CCBE1 expression, poor tumor differentiation, lymph node metastasis and vascular invasion were independent risk factors for both overall survival (OS) and disease-free survival (DFS) of CRC patients (all P<0.05). OS and DFS of 267 CRC patients from The Cancer Genome Atlas (TCGA) database showed the same trend (log-rank P=6e-04, HR [high] =2.4; log-rank P=0.0081, HR [high] =1.9). Conclusion High levels of CCBE1 contribute to the aggressiveness and poor prognosis of CRC. CCBE1 can serve as a novel potential biomarker to predict CRC patients' prognosis.
Collapse
Affiliation(s)
- Yan-Rong Zhao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li-Miao Xiao
- Department of Ultrasound, Hunan Children's Hospital, Changsha, Hunan, China
| | - Can-Guang Jin
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi-Peng Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Guang Yang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China,
| |
Collapse
|
9
|
Crawford J, Bower NI, Hogan BM, Taft RJ, Gabbett MT, McGaughran J, Simons C. Expanding the genotypic spectrum ofCCBE1mutations in Hennekam syndrome. Am J Med Genet A 2016; 170:2694-7. [DOI: 10.1002/ajmg.a.37803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Joanna Crawford
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Queensland Australia
| | - Neil I. Bower
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Queensland Australia
| | - Benjamin M. Hogan
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Queensland Australia
| | - Ryan J. Taft
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Queensland Australia
- Illumina, Inc.; San Diego California
- School of Medicine and Health; The George Washington University; Washington District of Columbia
| | - Michael T. Gabbett
- Genetic Health Queensland; Royal Brisbane and Women's Hospital; Brisbane Australia
- School of Medicine; The University of Queensland; Brisbane Queensland Australia
| | - Julie McGaughran
- Genetic Health Queensland; Royal Brisbane and Women's Hospital; Brisbane Australia
- School of Medicine; The University of Queensland; Brisbane Queensland Australia
| | - Cas Simons
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
10
|
Blei F. Update June 2016. Lymphat Res Biol 2016. [DOI: 10.1089/lrb.2016.29007.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|