1
|
Staudacher O, von Bernuth H. Clinical presentation, diagnosis, and treatment of chronic granulomatous disease. Front Pediatr 2024; 12:1384550. [PMID: 39005504 PMCID: PMC11239527 DOI: 10.3389/fped.2024.1384550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic granulomatous disease (CGD) is caused by an impaired respiratory burst reaction in phagocytes. CGD is an X-linked (XL) (caused by pathogenic variants in CYBB) or autosomal recessive inborn error of immunity (caused by pathogenic variants in CYBA, NCF1, NCF2, or CYBC1). Female carriers of XL-CGD and unfavorable lyonization may present with the partial or full picture of CGD. Patients with CGD are at increased risk for invasive bacterial and fungal infections of potentially any organ, but especially the lymph nodes, liver, and lungs. Pathogens most frequently isolated are S. aureus and Aspergillus spp. Autoinflammation is difficult to control with immunosuppression, and patients frequently remain dependent on steroids. To diagnose CGD, reactive oxygen intermediates (O2 - or H2O2) generated by the NADPH oxidase in peripheral blood phagocytes are measured upon in vitro activation with either phorbol-12-myristate-13-acetate (PMA) and/or TLR4 ligands (E. coli or LPS). Conservative treatment requires strict hygienic conduct and adherence to antibiotic prophylaxis against bacteria and fungi, comprising cotrimoxazole and triazoles. The prognosis of patients treated conservatively is impaired: for the majority of patients, recurrent and/or persistent infections, autoinflammation, and failure to thrive remain lifelong challenges. In contrast, cellular therapies (allogeneic stem cell transplantation or gene therapy) can cure CGD. Optimal outcomes in cellular therapies are observed in individuals without ongoing infections or inflammation. Yet cellular therapies are the only curative option for patients with persistent fungal infections or autoinflammation.
Collapse
Affiliation(s)
- Olga Staudacher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
2
|
Zhang Y, Shu Z, Li Y, Piao Y, Sun F, Han T, Wang T, Mao H. X-linked chronic granulomatous disease secondary to skewed X-chromosome inactivation in female patients. Clin Exp Immunol 2024; 215:261-267. [PMID: 38066563 PMCID: PMC10876111 DOI: 10.1093/cei/uxad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is a heterogeneous primary immunodeficiency. X-linked (XL) CGD caused by gene defects of CYBB is the most prevalent type of CGD. OBJECTIVE We aim to understand the clinical and molecule features of XL-CGD secondary to skewed X-chromosome inactivation (XCI) in female. METHODS We retrospectively reviewed the medical records of a female patient diagnosed with XL-CGD. Flow cytometry was used to detect the respiratory burst function. After restriction enzyme digestion of DNA, XCI was calculated by detecting fluorescent PCR products with capillary electrophoresis. The previously published female XL-CGD cases secondary to skewed XCI was summarized. RESULTS Clinical data were available for 15 female subjects. The median age of diagnosis was 16 years. Consistent with XL-CGD in males, infection was the most frequent manifestation in the female patients. Catalase-positive pathogens including Serratia marcescens and Staphylococcus aureus infections were the most common pathogens. Autoimmune/autoinflammation manifestations were observed in five patients. Dihydrorhodamine (DHR) assay showed that median %DHR+ values were 6.5% and the values varying with age were observed in 2 patients. All patients had a skewing XCI and there was no consistency between the daughter and carrier mother. Anti-infective treatment was effective in majority and there was no mortality reported in XL-CGD female patients to date. CONCLUSION XL-CGD should not be neglected in female patients manifested as CGD phenotype and it is necessary to make periodic clinical evaluation of CGD female carriers as the neutrophil oxidative function may decline with aging and increase the risk for infection.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Zhou Shu
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yan Li
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yurong Piao
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Fei Sun
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Tongxin Han
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Tianyou Wang
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Beijing, People's Republic of China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, People's Republic of China
| | - Huawei Mao
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, People's Republic of China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing, People's Republic of China
| |
Collapse
|
3
|
Salvator H, Mahlaoui N, Suarez F, Marcais A, Longchampt E, Tcherakian C, Givel C, Chabrol A, Caradec E, Lortholary O, Lanternier F, Goyard C, Couderc LJ, Catherinot E. [Pulmonary complications of Chronic Granulomatous Disease]. Rev Mal Respir 2024; 41:156-170. [PMID: 38272769 DOI: 10.1016/j.rmr.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
Chronic Granulomatosis Disease (CGD) is an inherited immune deficiency due to a mutation in the genes coding for the subunits of the NADPH oxidase enzyme that affects the oxidative capacity of phagocytic cells. It is characterized by increased susceptibility to bacterial and fungal infections, particularly Aspergillus, as well as complications associated with hyperinflammation and granulomatous tissue infiltration. There exist two types of frequently encountered pulmonary manifestations: (1) due to their being initially pauci-symptomatic, possibly life-threatening infectious complications are often discovered at a late stage. Though their incidence has decreased through systematic anti-bacterial and anti-fungal prophylaxis, they remain a major cause of morbidity and mortality; (2) inflammatory complications consist in persistent granulomatous mass or interstitial pneumoniae, eventually requiring immunosuppressive treatment. Pulmonary complications recurring since infancy generate parenchymal and bronchial sequelae that impact functional prognosis. Hematopoietic stem cell allograft is a curative treatment; it is arguably life-sustaining and may limit the morbidity of the disease. As a result of improved pediatric management, life expectancy has increased dramatically. That said, new challenges have appeared with regard to adults: difficulties of compliance, increased inflammatory manifestations, acquired resistance to anti-infectious therapies. These different developments underscore the importance of the transition period and the need for multidisciplinary management.
Collapse
Affiliation(s)
- H Salvator
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France; UMR0892 VIM-Suresnes Inrae, université Paris-Saclay, Suresnes, France; Faculté de Sciences de la Vie Simone Veil, Université Versailles Saint Quentin, Montigny-le-Bretonneux, France.
| | - N Mahlaoui
- Centre de référence déficits immunitaires héréditaires (CEREDIH), hôpital Necker-Enfants Malades, institut Imagine, université Paris Cité, Assistance publique-Hôpitaux de Paris, Paris, France; Service d'hématologie-immunologie et rhumatologie pédiatrique, hôpital Necker-Enfants Malades, Assistance publique-Hôpitaux de Paris, Paris, France
| | - F Suarez
- Centre de référence déficits immunitaires héréditaires (CEREDIH), hôpital Necker-Enfants Malades, institut Imagine, université Paris Cité, Assistance publique-Hôpitaux de Paris, Paris, France; Service d'hématologie adultes, hôpital Necker-Enfants Malades, université Paris Cité, Assistance publique-Hôpitaux de Paris, Paris, France
| | - A Marcais
- Service d'hématologie adultes, hôpital Necker-Enfants Malades, université Paris Cité, Assistance publique-Hôpitaux de Paris, Paris, France
| | - E Longchampt
- Service d'anatomopathologie, hôpital Foch, Suresnes, France
| | - C Tcherakian
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France
| | - C Givel
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France
| | - A Chabrol
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France
| | - E Caradec
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France
| | - O Lortholary
- Service de maladies infectieuses, hôpital Necker-Enfants Malades, Assistance publique-Hôpitaux de Paris, Paris, France; Centre national de référence des mycoses invasives et antifongiques, Centre national de la recherche scientifique, unite mixté de recherche (UMR) 2000, Institut Pasteur, université Paris Cité, Paris, France
| | - F Lanternier
- Service de maladies infectieuses, hôpital Necker-Enfants Malades, Assistance publique-Hôpitaux de Paris, Paris, France; Centre national de référence des mycoses invasives et antifongiques, Centre national de la recherche scientifique, unite mixté de recherche (UMR) 2000, Institut Pasteur, université Paris Cité, Paris, France
| | - C Goyard
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France
| | - L J Couderc
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France; UMR0892 VIM-Suresnes Inrae, université Paris-Saclay, Suresnes, France
| | - E Catherinot
- Service de pneumologie, hôpital Foch, 40, rue Worth, 92150 Suresnes, France
| |
Collapse
|
4
|
Tsilifis C, Torppa T, Williams EJ, Albert MH, Hauck F, Soncini E, Kang E, Malech H, Schuetz C, von Bernuth H, Slatter MA, Gennery AR. Allogeneic HSCT for Symptomatic Female X-linked Chronic Granulomatous Disease Carriers. J Clin Immunol 2023; 43:1964-1973. [PMID: 37620741 PMCID: PMC10661721 DOI: 10.1007/s10875-023-01570-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
X-linked chronic granulomatous disease (XL-CGD) is an inherited disorder of superoxide production, causing failure to generate the oxidative burst in phagocytes. It is characterized by invasive bacterial and fungal infections, inflammation, and chronic autoimmune disease. While XL-CGD carriers were previously assumed to be healthy, a range of clinical manifestations with significant morbidity have recently been described in a subgroup of carriers with impaired neutrophil oxidative burst due to skewed lyonization. Allogeneic hematopoietic stem cell transplantation (HSCT) is the standard curative treatment for CGD but has rarely been reported in individual symptomatic carriers to date. We undertook a retrospective international survey of outcome of HSCT for symptomatic XL-CGD carriers. Seven symptomatic female XL-CGD carriers aged 1-56 years underwent HSCT in four centers, indicated for severe and recurrent infection, colitis, and autoimmunity. Two patients died from transplant-related complications, following donor engraftment and restoration of oxidative burst. All surviving patients demonstrated resolution of their neutrophil oxidative burst defect with concordant reduction in infection and inflammatory symptoms and freedom from further immunosuppressive therapy. In conclusion, allogeneic HSCT may cure the phagocyte defect in symptomatic XL-CGD carriers and improve their recurrent and disabling infective and inflammatory symptoms but risks transplant-related complications.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Ward 3, Newcastle Upon Tyne, NE1 4LP, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.
| | - Tuulia Torppa
- School of Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Eleri J Williams
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Ward 3, Newcastle Upon Tyne, NE1 4LP, UK
| | - Michael H Albert
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Elena Soncini
- Paediatric Haematopoietic Stem Cell Transplant Unit, Children's Hospital ASST Spedali Civili, Brescia, Italy
| | - Elizabeth Kang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Harry Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Immunology, Labor Berlin Charité-Vivantes, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Mary A Slatter
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Ward 3, Newcastle Upon Tyne, NE1 4LP, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Andrew R Gennery
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Ward 3, Newcastle Upon Tyne, NE1 4LP, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
5
|
Krzyzanowski D, Oszer A, Madzio J, Zdunek M, Kolodrubiec J, Urbanski B, Mlynarski W, Janczar S. The paradox of autoimmunity and autoinflammation in inherited neutrophil disorders - in search of common patterns. Front Immunol 2023; 14:1128581. [PMID: 37350970 PMCID: PMC10283154 DOI: 10.3389/fimmu.2023.1128581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Congenital defects of neutrophil number or function are associated with a severe infectious phenotype that may require intensive medical attention and interventions to be controlled. While the infectious complications in inherited neutrophil disorders are easily understood much less clear and explained are autoimmune and autoinflammatory phenomena. We survey the clinical burden of autoimmunity/autoinflammation in this setting, search for common patterns, discuss potential mechanisms and emerging treatments.
Collapse
Affiliation(s)
- Damian Krzyzanowski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Aleksandra Oszer
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Maciej Zdunek
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Julia Kolodrubiec
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Bartosz Urbanski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Lee WI, Fang YF, Huang JL, You HL, Hsieh MY, Huang WT, Liang CJ, Kang CC, Wu TS. Distinct Lymphocyte Immunophenotyping and Quantitative Anti-Interferon Gamma Autoantibodies in Taiwanese HIV-Negative Patients with Non-Tuberculous Mycobacterial Infections. J Clin Immunol 2023; 43:717-727. [PMID: 36624329 DOI: 10.1007/s10875-022-01423-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE The presence of anti-interferon-γ autoantibodies (AutoAbs-IFN-γ) is not rare in patients suffering from persistent non-tuberculous mycobacterial (NTM) infections that are characteristic of adult-onset immunodeficiency syndrome. The immune disturbances in this distinct disorder remain to be elucidated. METHODS Patients with NTM infections but without effective response over 3 months' treatment were referred to our institute to quantify their level of AutoAbs-IFN-γ after excluding defective IL12/23-IFN-γ circuit and reactive oxygen species production. The AutoAbs-IFN-γ and percentage of lymphocyte subpopulations most relevant to T and B cell pools were assessed and compared with age-matched healthy controls. RESULTS A total of 31 patients were enrolled during the 15-year study period (2008-2022), 20 patients with > 50% suppression of IFN-γ detection at 1:100 serum dilution were classified into the Auto-NTM group. The remaining 11 with negligible suppression were assigned to the No Auto-NTM group. Mycobacterium chimaera-intracellulare group (MAC), M. kansasii, and M. abscessus were the most common pathogens. Pneumonia (19 vs 7), lymphadenitis (11 vs 5), Salmonella sepsis (6 vs 2), osteomyelitis (5 vs 1), and cutaneous herpes zoster (4 vs 4) were the main manifestations in both the Auto-NTM and No Auto-NTM groups who had similar onset-age (55.3 vs 53.6 years; p = 0.73) and follow-up duration (71.9 vs 54.6 months; p = 0.45). The Auto-NTM group had significantly higher transitional (IgM + + CD38 + +), CD19 + CD21-low, and plasmablast (IgM-CD38 + +) in the B cell pool, with higher effector memory (CD4 + /CD8 + CD45RO + CCR7 -), senescent CD8 + CD57 + , and Th17 cells, but lower naïve (CD4 + /CD8 + CD45RO - CCR7 +) and Treg cells in the T cell pool when compared to the No Auto-NTM and healthy groups. NTM patients with/without AutoAbs-IFN-γ had lower Th1-like Tfh (CD4 + CXCR5 + CXCR3 + CCR6 -) cells. All Auto-NTM patients still had non-remitted mycobacterial infections and higher AutoAbs-IFN-γ despite anti-CD20 therapy in 3 patients. CONCLUSION In patients with suspected adult-onset immunodeficiency syndrome, two thirds (20/31) were recognized as having significantly inhibitory AutoAbs-IFN-γ with higher antibody-enhancing transitional, CD19 + CD21-low and plasmablast B cells; as well as higher effector memory, senescent CD8 + CD57 + and Th17 cells, but lower naïve T and Treg cells in contrast to those with negligible AutoAbs-IFN-γ. Such immunophenotyping disturbances might correlate with the presence of AutoAbs-IFN-γ. However, the mutual mechanisms need to be further clarified.
Collapse
Affiliation(s)
- Wen-I Lee
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yao-Fan Fang
- Department of Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jing-Long Huang
- Department of Pediatrics, New Taipei Municipal TuChen Hospital, New Taipei, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Meng-Ying Hsieh
- Division of Pediatric Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wan-Ting Huang
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Jou Liang
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chen-Chen Kang
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ting-Shu Wu
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Immunological Aspects of X-Linked Chronic Granulomatous Disease Female Carriers. Antioxidants (Basel) 2021; 10:antiox10060891. [PMID: 34206017 PMCID: PMC8229314 DOI: 10.3390/antiox10060891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/04/2022] Open
Abstract
X-linked Granulomatous Disease (XL-CGD) carriers were previously thought to be clinically healthy because random X-chromosome inactivation (XCI) allows approximately half of their phagocytes/monocytes to express functional gp91phox protein. This supports the NADPH oxidase activity necessary for the killing of engulfed pathogens. Some XL-CGD carriers suffer from inflammatory and autoimmune manifestations as well as infections, although the skewed-XCI of a mutated allele is reported to be exclusively determinant for infection susceptibility. Indeed, immune dysregulation could be determined by dysfunctional non-phagocytic leukocytes rather than the percentage of functioning neutrophils. Here we investigated in a cohort of 12 X-CGD female carriers at a particular time of their life the gp91phox protein expression/function and how this affects immune cell function. We showed that 50% of carriers have an age-independent skewed-XCI and 65% of them have a misrepresented expression of the wild-type gene. The majority of carriers manifested immune dysregulation and GI manifestations regardless of age and XCI. Immunological investigations revealed an increase in CD19+ B cells, CD56bright-NK cell percentage, a slightly altered CD107a upregulation on CD4+ T cells, and reduced INFγ-production by CD4+ and CD8+ cells. Notably, we demonstrated that the residual level of ROS robustly correlates with INFγ-expressing T cells, suggesting a role in promoting immune dysregulation in carriers.
Collapse
|