1
|
Staudacher O, von Bernuth H. Clinical presentation, diagnosis, and treatment of chronic granulomatous disease. Front Pediatr 2024; 12:1384550. [PMID: 39005504 PMCID: PMC11239527 DOI: 10.3389/fped.2024.1384550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic granulomatous disease (CGD) is caused by an impaired respiratory burst reaction in phagocytes. CGD is an X-linked (XL) (caused by pathogenic variants in CYBB) or autosomal recessive inborn error of immunity (caused by pathogenic variants in CYBA, NCF1, NCF2, or CYBC1). Female carriers of XL-CGD and unfavorable lyonization may present with the partial or full picture of CGD. Patients with CGD are at increased risk for invasive bacterial and fungal infections of potentially any organ, but especially the lymph nodes, liver, and lungs. Pathogens most frequently isolated are S. aureus and Aspergillus spp. Autoinflammation is difficult to control with immunosuppression, and patients frequently remain dependent on steroids. To diagnose CGD, reactive oxygen intermediates (O2 - or H2O2) generated by the NADPH oxidase in peripheral blood phagocytes are measured upon in vitro activation with either phorbol-12-myristate-13-acetate (PMA) and/or TLR4 ligands (E. coli or LPS). Conservative treatment requires strict hygienic conduct and adherence to antibiotic prophylaxis against bacteria and fungi, comprising cotrimoxazole and triazoles. The prognosis of patients treated conservatively is impaired: for the majority of patients, recurrent and/or persistent infections, autoinflammation, and failure to thrive remain lifelong challenges. In contrast, cellular therapies (allogeneic stem cell transplantation or gene therapy) can cure CGD. Optimal outcomes in cellular therapies are observed in individuals without ongoing infections or inflammation. Yet cellular therapies are the only curative option for patients with persistent fungal infections or autoinflammation.
Collapse
Affiliation(s)
- Olga Staudacher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
2
|
Ma M, Duan Y, Peng C, Wu Y, Zhang X, Chang B, Wang F, Yang H, Zheng R, Cheng H, Cheng Y, He Y, Huang J, Lei J, Ma H, Li L, Wang J, Huang X, Tang F, Liu J, Li J, Ying R, Wang P, Sha W, Gao Y, Wang L, Ge B. Mycobacterium tuberculosis inhibits METTL14-mediated m 6A methylation of Nox2 mRNA and suppresses anti-TB immunity. Cell Discov 2024; 10:36. [PMID: 38548762 PMCID: PMC10978938 DOI: 10.1038/s41421-024-00653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/29/2024] [Indexed: 04/01/2024] Open
Abstract
Internal N6-methyladenosine (m6A) modifications are among the most abundant modifications of messenger RNA, playing a critical role in diverse biological and pathological processes. However, the functional role and regulatory mechanism of m6A modifications in the immune response to Mycobacterium tuberculosis infection remains unknown. Here, we report that methyltransferase-like 14 (METTL14)-dependent m6A methylation of NAPDH oxidase 2 (Nox2) mRNA was crucial for the host immune defense against M. tuberculosis infection and that M. tuberculosis-secreted antigen EsxB (Rv3874) inhibited METTL14-dependent m6A methylation of Nox2 mRNA. Mechanistically, EsxB interacted with p38 MAP kinase and disrupted the association of TAB1 with p38, thus inhibiting the TAB1-mediated autophosphorylation of p38. Interaction of EsxB with p38 also impeded the binding of p38 with METTL14, thereby inhibiting the p38-mediated phosphorylation of METTL14 at Thr72. Inhibition of p38 by EsxB restrained liquid-liquid phase separation (LLPS) of METTL14 and its subsequent interaction with METTL3, preventing the m6A modification of Nox2 mRNA and its association with the m6A-binding protein IGF2BP1 to destabilize Nox2 mRNA, reduce ROS levels, and increase intracellular survival of M. tuberculosis. Moreover, deletion or mutation of the phosphorylation site on METTL14 impaired the inhibition of ROS level by EsxB and increased bacterial burden or histological damage in the lungs during infection in mice. These findings identify a previously unknown mechanism that M. tuberculosis employs to suppress host immunity, providing insights that may empower the development of effective immunomodulators that target M. tuberculosis.
Collapse
Affiliation(s)
- Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yongjia Duan
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Cheng Peng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - You Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinning Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Boran Chang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Hongyu Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yuanna Cheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yifan He
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jingping Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jinming Lei
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Hanyu Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Liru Li
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Fen Tang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Jun Liu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruoyan Ying
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Wang
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Lin Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Tongji University School of Medicine, Shanghai, China.
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China.
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|