1
|
Wang P, Jiang S, Zeng J, Huang Y, Song B, Wang B. A functional cobalt-organic framework constructed by triphenylamine tricarboxylate: Detect nitroaromatics by fluorescence sensing and UV-shielding. Talanta 2023; 256:124319. [PMID: 36753886 DOI: 10.1016/j.talanta.2023.124319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Luminescent metal-organic frameworks (LMOF) with ligand-modified are a promising strategy to be applied to fabricate chemical sensors. Herein, a novel Co (II) metal-organic framework (Co-MOF), namely Co [(NTB) bpy] (NTB = 4,4'4″-tricarboxylic acid triphenylamine, bpy = 4,4 '-bipyridyl), was successfully synthesized with excellent water stability and fluorescence properties. Due to the propeller structure of NTB ligands, a special topological structure of Co-MOF was shown: {24.416.68}{2}4. It was proved that Co-MOF has great stability by soaking in different solvents for two weeks. Remarkably, the fluorescence quenching experiment verified that Co-MOF has excellent fluorescence sensor performance. Trinitrophenol, 2,4-dinitrophenol, and 2-amino-4-nitrotoluene (10-5 M) with LOD of 9.00 × 10-5, 5.40 × 10-5 and 5.07 × 10-6 M can be detected via the process of fluorescence enhancement and quenching. Throughout the investigation, the mechanics of fluorescence quenching was performed. Due to the excellent UV absorption capacity of Co-MOF, it was a promising application to combine low-dimensional nanomaterials with sustainable biomass materials. A hybrid films of Co-MOF and cellulose acetate (CA) was generated. The hybrid films had highly transparency in the visible wavelength range and excellent UV-shielding ability owing to the CA/Co-MOF hybrid films enhanced the UV absorption capacity of Co-MOF.
Collapse
Affiliation(s)
- Peijiang Wang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, PR China; Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, PR China; CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, PR China; University of Chinese Academy of Sciences, Beijing, 10049, PR China
| | - Shanshan Jiang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, PR China; Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, PR China; CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, PR China; CASH GCC Shaoguan Research Institute of Advanced Materials, Nanxiong, 512400, PR China; University of Chinese Academy of Sciences, Beijing, 10049, PR China
| | - Jun Zeng
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, PR China; Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, PR China; CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, PR China; CASH GCC Shaoguan Research Institute of Advanced Materials, Nanxiong, 512400, PR China; University of Chinese Academy of Sciences, Beijing, 10049, PR China
| | - Yuewen Huang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, PR China; Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, PR China; CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, PR China; CASH GCC Shaoguan Research Institute of Advanced Materials, Nanxiong, 512400, PR China; University of Chinese Academy of Sciences, Beijing, 10049, PR China
| | - Bin Song
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, PR China; Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, PR China; CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, PR China; CASH GCC Shaoguan Research Institute of Advanced Materials, Nanxiong, 512400, PR China; University of Chinese Academy of Sciences, Beijing, 10049, PR China
| | - Bin Wang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, 510650, PR China; Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, 510650, PR China; CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, 510650, PR China; CASH GCC Shaoguan Research Institute of Advanced Materials, Nanxiong, 512400, PR China; University of Chinese Academy of Sciences, Beijing, 10049, PR China; Zhaoqing Outao New Material Co., Ltd, Zhaoqing, 526000, PR China.
| |
Collapse
|