1
|
Guoqiang G, Liang Q, Yani Z, Pengyun W, Fanzhuo K, Yuyang Z, Zhiyuan L, Xing N, Xue Z, Qiongya L, Bin Z. Recent advances in glucose monitoring utilizing oxidase electrochemical biosensors integrating carbon-based nanomaterials and smart enzyme design. Front Chem 2025; 13:1591302. [PMID: 40357127 PMCID: PMC12066265 DOI: 10.3389/fchem.2025.1591302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Glucose oxidase (GOx), as a molecular recognition element of glucose biosensors, has high sensitivity and selectivity advantages. As a type of biosensor, the glucose oxidase electrode exhibits advantages such as ease of operation, high sensitivity, and strong specificity, promising broad application prospects in biomedical science, the food industry, and other fields. In recent years, with the advancement of nanotechnology, research efforts to enhance the performance of GOx biosensors have primarily focused on improving the conductive properties and specific surface area of nanomaterials, while neglecting the potential to modify the structure of the core component, GOx itself, to improve biosensor performance. Rapid modification of the GOx surface through chemical modification techniques yields a new modified enzyme (mGOx). Meanwhile, composite techniques involving carbon nanomaterials can be employed to further enhance sensor performance. This article reviews the construction methods and optimization strategies of glucose oxidase electrodes in recent years, along with research progress in their application in electrochemical sensing for glucose detection, and provides an outlook for future developments.
Collapse
Affiliation(s)
- Guan Guoqiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qu Liang
- School of Food and Bioengineering, Wuhu Institute of Technology, Wuhu, China
| | - Zhao Yani
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wang Pengyun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Kong Fanzhuo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhang Yuyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Zhiyuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ni Xing
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhang Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lu Qiongya
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zou Bin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Karabag A, Soyler D, Udum YA, Toppare L, Gunbas G, Soylemez S. Building Block Engineering toward Realizing High-Performance Electrochromic Materials and Glucose Biosensing Platform. BIOSENSORS 2023; 13:677. [PMID: 37504076 PMCID: PMC10377066 DOI: 10.3390/bios13070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The molecular engineering of conjugated systems has proven to be an effective method for understanding structure-property relationships toward the advancement of optoelectronic properties and biosensing characteristics. Herein, a series of three thieno[3,4-c]pyrrole-4,6-dione (TPD)-based conjugated monomers, modified with electron-rich selenophene, 3,4-ethylenedioxythiophene (EDOT), or both building blocks (Se-TPD, EDOT-TPD, and EDOT-Se-TPD), were synthesized using Stille cross-coupling and electrochemically polymerized, and their electrochromic properties and applications in a glucose biosensing platform were explored. The influence of structural modification on electrochemical, electronic, optical, and biosensing properties was systematically investigated. The results showed that the cyclic voltammograms of EDOT-containing materials displayed a high charge capacity over a wide range of scan rates representing a quick charge propagation, making them appropriate materials for high-performance supercapacitor devices. UV-Vis studies revealed that EDOT-based materials presented wide-range absorptions, and thus low optical band gaps. These two EDOT-modified materials also exhibited superior optical contrasts and fast switching times, and further displayed multi-color properties in their neutral and fully oxidized states, enabling them to be promising materials for constructing advanced electrochromic devices. In the context of biosensing applications, a selenophene-containing polymer showed markedly lower performance, specifically in signal intensity and stability, which was attributed to the improper localization of biomolecules on the polymer surface. Overall, we demonstrated that relatively small changes in the structure had a significant impact on both optoelectronic and biosensing properties for TPD-based donor-acceptor polymers.
Collapse
Affiliation(s)
- Aliekber Karabag
- Faculty of Science, Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- METU Center for Solar Energy Research and Applications (ODTU-GUNAM), Ankara 06800, Turkey
| | - Dilek Soyler
- Faculty of Engineering, Department of Biomedical Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Yasemin Arslan Udum
- Technical Sciences Vocational Schools, Gazi University, Ankara 06500, Turkey
| | - Levent Toppare
- Faculty of Science, Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Department of Polymer Science and Technology, Middle East Technical University, Ankara 06800, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Gorkem Gunbas
- Faculty of Science, Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- METU Center for Solar Energy Research and Applications (ODTU-GUNAM), Ankara 06800, Turkey
| | - Saniye Soylemez
- Faculty of Engineering, Department of Biomedical Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| |
Collapse
|
3
|
Bulut U, Öykü Sayın V, Altin Y, Can Cevher Ş, Cirpan A, Celik Bedeloglu A, Soylemez S. A Flexible Carbon Nanofiber and Conjugated Polymer-Based Electrode for Glucose Sensing. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Ponnaiah SK, Periakaruppan P, Selvam M, Muthupandian S, Jeyaprabha B, Selvanathan R. Clinically Pertinent Manganese Oxide/Polyoxytyramine/Reduced Graphene Oxide Nanocomposite for Voltammetric Detection of Salivary and Urinary Arsenic. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01696-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|