1
|
Jayanetti M, Thambiliyagodage C, Liyanaarachchi H, Ekanayake G, Mendis A, Usgodaarachchi L. In vitro influence of PEG functionalized ZnO-CuO nanocomposites on bacterial growth. Sci Rep 2024; 14:1293. [PMID: 38221550 PMCID: PMC10788344 DOI: 10.1038/s41598-024-52014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/12/2024] [Indexed: 01/16/2024] Open
Abstract
Polyethyleneglycol-coated biocompatible CuO-ZnO nanocomposites were fabricated hydrothermally varying Zn:Cu ratios as 1:1, 2:1, and 1:2, and their antibacterial activity was determined through the well diffusion method against the Gram-negative Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and the Gram-positive Staphylococcus aureus. The minimum inhibitory concentration and the minimum bactericidal concentration values of the synthesized samples were determined. Subsequently, the time synergy kill assay was performed to elucidate the nature of the overall inhibitory effect against the aforementioned bacterial species. The mean zone of inhibition values for all four samples are presented. The inhibitory effect increased with increasing concentration of the nanocomposite (20, 40 and 60 mg/ml) on all the bacterial species except for S. aureus. According to the MBC/MIC ratio, ZnO was found to be bacteriostatic for E. coli and P. aeruginosa, and bactericidal for S. aureus and K. pneumoniae. Zn:Cu 2:1 was bactericidal on all bacterial species. A bacteriostatic effect was observed on E. coli and P. aeruginosa in the presence of Zn:Cu 1:1 whereas, it showed a bactericidal effect on S. aureus and K. pneumoniae. Zn:Cu 1:2 exhibited a bacteriostatic effect on E. coli while a bactericidal effect was observed for E. coli, P. aeruginosa, and K. pneumoniae. The metal oxide nanocomposites were found to be more sensitive towards the Gram-positive strain than the Gram-negative strains. Further, all the nanocomposites possess anti-oxidant activity as shown by the DPPH assay.
Collapse
Affiliation(s)
- Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
| | - Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka.
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
| | - Geethma Ekanayake
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
| | - Amavin Mendis
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
| | - Leshan Usgodaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
| |
Collapse
|
2
|
Xie Y, Cheng G, Wu Z, Shi S, Zhao J, Jiang L, Jiang D, Yuan M, Wang Y, Yuan M. Preparation and Characterization of New Electrospun Poly(lactic acid) Nanofiber Antioxidative Active Packaging Films Containing MCM-41 Mesoporous Molecular Sieve Loaded with Phloridzin and Their Application in Strawberry Packaging. NANOMATERIALS 2022; 12:nano12071229. [PMID: 35407347 PMCID: PMC9000760 DOI: 10.3390/nano12071229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022]
Abstract
Health concerns about food safety have increased in recent years. In order to ensure the safety and increase the shelf-life of food, many methods have been used to slow down the oxidation rate of food fat. In order to solve this problem, a new type of antioxidant-active packaging has emerged. Poly(lactic acid) (PLA) films containing phloridzin adsorbed on to an MCM-41 mesoporous molecular sieve were prepared by electrostatic spinning, using PLA as a film-forming substrate, phloridzin as an antioxidant, and MCM-41 as the adsorption and controlled release carrier. The physical properties of the new films—including microscopic structure, water vapor transmission rate, and fresh-keeping effects, as well as the mechanical, thermal, antioxidant, and antibacterial properties—were studied. When the mass ratio of MCM-41 to phloridzin is 1:2, the nanofiber membrane achieves a 53.61% free-radical scavenging rate and better antibacterial performance (85.22%) due to the high content of phloridzin (30.54%). Additionally, when the mass ratio of the molecular sieve to phloridzin is 1:2 and 3:4 (with the best antibacterial performance of 89.30%), the films significantly delay lipid oxidation in the strawberry packaging, allowing the fresh-keeping time to be extended to up to 21 days before mildew appears. In this study, an MCM-41 mesoporous molecular sieve was used to load phloridzin for the first time. The packaging film with phloridzin, MCM-41, and poly(lactic acid) were used as the raw materials and electrospinning technology was used to prepare the packaging film with antioxidant activity. The packaging film was used for the first time in the packaging of strawberries.
Collapse
Affiliation(s)
- Yuan Xie
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
| | - Zhoushan Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China; (Z.W.); (S.S.); (J.Z.)
| | - Shang Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China; (Z.W.); (S.S.); (J.Z.)
| | - Jinghao Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China; (Z.W.); (S.S.); (J.Z.)
| | - Lin Jiang
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
| | - Dengbang Jiang
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
| | - Mingwei Yuan
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
| | - Yudan Wang
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China; (Z.W.); (S.S.); (J.Z.)
- Correspondence: (Y.W.); (M.Y.)
| | - Minglong Yuan
- School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China; (Y.X.); (L.J.); (D.J.); (M.Y.)
- Correspondence: (Y.W.); (M.Y.)
| |
Collapse
|
3
|
Nosrati A, Amirnejat S, Javanshir S. Preparation, Antibacterial Activity, and Catalytic Application of Magnetic Graphene Oxide-Fucoidan in the Synthesis of 1,4-Dihydropyridines and Polyhydroquinolines. ChemistryOpen 2021; 10:1186-1196. [PMID: 34851041 PMCID: PMC8634770 DOI: 10.1002/open.202100221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Polymer-coated magnetic nanoparticles are emerging as a useful tool for a variety of applications, including catalysis. In the present study, fucoidan-coated magnetic graphene oxide was synthesized using a natural sulfated polysaccharide. The prepared BaFe12 O19 @GO@Fu (Fu=fucoidan, GO=graphene oxide) was characterized using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) analysis, vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), Raman spectroscopy, and X-ray diffraction (XRD). The catalytic proficiency of BaFe12 O19 @GO@Fu was investigated in the synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives. Excellent turnover numbers (TON) and turnover frequencies (TOF) (6330 and 25320 h-1 ) testify to the high efficiency of the catalyst. Moreover, the antimicrobial activity of BaFe12 O19 @GO@Fu was evaluated against Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus) through the Agar well diffusion method, indicating that BaFe12 O19 @GO@Fu has antibacterial activity against S. aureus.
Collapse
Affiliation(s)
- Aliakbar Nosrati
- Heterocyclic Chemistry Research LaboratoryChemistry DepartmentIran University of Science and TechnologyTehran16846-13114Iran
| | - Sara Amirnejat
- Heterocyclic Chemistry Research LaboratoryChemistry DepartmentIran University of Science and TechnologyTehran16846-13114Iran
| | - Shahrzad Javanshir
- Heterocyclic Chemistry Research LaboratoryChemistry DepartmentIran University of Science and TechnologyTehran16846-13114Iran
| |
Collapse
|
4
|
Prisrin SA, Priyanga M, Ponvel KM, Kaviarasan K, Kalidass S. Plant Mediated Approach for the Fabrication of Nano CuO–NiO Mixed Oxides Using Aqueous Extract of Mimusops Elengi Leaf: Green Synthesis, Characterization and Antibacterial Activity Studies. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Banazadeh M, Amirnejat S, Javanshir S. Synthesis, Characterization, and Catalytic Properties of Magnetic Fe 3O 4@FU: A Heterogeneous Nanostructured Mesoporous Bio-Based Catalyst for the Synthesis of Imidazole Derivatives. Front Chem 2020; 8:596029. [PMID: 33335887 PMCID: PMC7736414 DOI: 10.3389/fchem.2020.596029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
In this protocol, Fucoidan (FU), a fucose-rich sulfated polysaccharide extracted from brown algae Fucus vesiculosus was used for in situ preparation of magnetic Fe3O4@FU. Nanoco magnetic properties of Fe3O4@FU were investigated by energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) adsorption method, and vibrating sample magnetometer (VSM). The catalytic activity of Fe3O4@FU was employed for the synthesis of tri- and tetra-substituted imidazoles through three- and four-component reactions respectively, between benzyl, aldehydes, NH4OAc and benzyl, aldehydes, NH4OAc, and amine under reflux in ethanol. It is worth nothing that excellent yields, short reaction times, chromatography-free purification, and environmental friendliness are highlighted features of this protocol.
Collapse
Affiliation(s)
- Maryam Banazadeh
- Heterocyclic Chemistry Research Laboratory, Chemistry Department, Iran University of Science and Technology, Tehran, Iran
| | - Sara Amirnejat
- Heterocyclic Chemistry Research Laboratory, Chemistry Department, Iran University of Science and Technology, Tehran, Iran
| | - Shahrzad Javanshir
- Heterocyclic Chemistry Research Laboratory, Chemistry Department, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
6
|
Amirnejat S, Nosrati A, Javanshir S, Naimi-Jamal MR. Superparamagnetic alginate-based nanocomposite modified by L-arginine: An eco-friendly bifunctional catalysts and an efficient antibacterial agent. Int J Biol Macromol 2020; 152:834-845. [DOI: 10.1016/j.ijbiomac.2020.02.212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
|