1
|
Rahchamandi SYR, Mirhadi E, Gheybi F, Kazemi-Beydokhti A, Jaafari MR, Mostafavi E, Kesharwani P, Sahebkar A, Alavizadeh SH. Engineering carbon-based nanomaterials for the delivery of platinum compounds: An innovative cancer disarming frontier. ENVIRONMENTAL RESEARCH 2024; 262:119933. [PMID: 39278586 DOI: 10.1016/j.envres.2024.119933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Carbon-based nanomaterials have been frequently used as one of the most advanced and fascinating nanocarriers for drug delivery applications due to their unique physicochemical properties. Varying types of carbon nanomaterials (CNMs) including carbon nanotubes, graphene, graphene oxides, carbon nanohorns, fullerenes, carbon nanodots, and carbon nanodiamonds are promising candidates for designing novel systems to deliver platinum compounds. CNMs modification with various moieties renders vast bio-applications in the area of targeted and organelle-specific cancer therapy. This review featured an updated and concise summarizations of various types of CNMs, their synthesis, advantages and disadvantages including potential bio-toxicity for biomedical applications. The therapeutic utility of CNMs and their efficacy have been noticed and for the first time, this review addressed CNMs-focused applications on the delivery of platinum-derivatives to the cancer site. Collectively, the contents of this review will assist researchers to focus on the possible fabrication, bio-functionalization and designing methods of CNMs to the further development of their future biomedical implementations.
Collapse
Affiliation(s)
- Seyedeh Yasaman Rahnamaei Rahchamandi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Kazemi-Beydokhti
- Department of Chemical Engineering, School of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zhuang Y, Zhu L, Chen X, Chen J, Ye Z, Kang J, Wang X, Han Z. Synthesis of carbon dot based Schiff bases and selective anticancer activity in glioma cells. RSC Adv 2024; 14:1952-1961. [PMID: 38192314 PMCID: PMC10772990 DOI: 10.1039/d3ra06411e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Schiff bases have remarkable anticancer activity and are used for glioma therapy. However, the poor water solubility/dispersibility limits their therapeutic potential in biological systems. To address this issue, carbon dots (CDs) have been utilized to enhance the dispersibility in water and biological efficacy of Schiff bases. The amino groups on the surface of CDs were conjugated effectively with the aldehyde group of terephthalaldehyde to form novel CD-based Schiff bases (CDSBs). The results of the MTT assays demonstrate that CDSBs have significant anticancer activity in glioma GL261 cells and U251 cells, with IC50 values of 17.9 μg mL-1 and 14.9 μg mL-1, respectively. CDSBs have also been found to have good biocompatibility with normal glial cells. The production of reactive oxygen species (ROS) in GL261 glioma cells showed that CDSBs, at a concentration of 44 μg mL-1, resulted in approximately 13 times higher intracellular ROS production than in the control group. These experiments offer evidence that CDSBs induce mitochondrial damage, leading to a reduction in mitochondrial membrane potential in GL261 cells. In particular, in this work, CDs serve not as carriers, but as an integral part of the anticancer drugs, which can expand the role of CDs in cancer treatment.
Collapse
Affiliation(s)
- Yafeng Zhuang
- School of Pharmacy, Fujian Medical University Fuzhou Fujian 350122 PR China
| | - Liping Zhu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University Fuzhou 350011 Fujian PR China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital Fuzhou 350011 Fujian PR China
| | - Xiaoping Chen
- School of Pharmacy, Fujian Medical University Fuzhou Fujian 350122 PR China
| | - Jing Chen
- School of Pharmacy, Fujian Medical University Fuzhou Fujian 350122 PR China
| | - Zhoujie Ye
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University Fuzhou 350011 Fujian PR China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital Fuzhou 350011 Fujian PR China
| | - Jie Kang
- School of Pharmacy, Fujian Medical University Fuzhou Fujian 350122 PR China
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University Fuzhou 350011 Fujian PR China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital Fuzhou 350011 Fujian PR China
| | - Zhizhong Han
- School of Pharmacy, Fujian Medical University Fuzhou Fujian 350122 PR China
| |
Collapse
|
3
|
Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. NANO-MICRO LETTERS 2021; 13:142. [PMID: 34138386 PMCID: PMC8196938 DOI: 10.1007/s40820-021-00630-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/23/2021] [Indexed: 05/03/2023]
Abstract
Lung cancer is a complex thoracic malignancy developing consequential to aberrations in a myriad of molecular and biomolecular signaling pathways. It is one of the most lethal forms of cancers accounting to almost 1.8 million new annual incidences, bearing overall mortality to incidence ratio of 0.87. The dismal prognostic scenario at advanced stages of the disease and metastatic/resistant tumor cell populations stresses the requisite of advanced translational interdisciplinary interventions such as bionanotechnology. This review article deliberates insights and apprehensions on the recent prologue of nanobioengineering and bionanotechnology as an approach for the clinical management of lung cancer. The role of nanobioengineered (bio-nano) tools like bio-nanocarriers and nanobiodevices in secondary prophylaxis, diagnosis, therapeutics, and theranostics for lung cancer management has been discussed. Bioengineered, bioinspired, and biomimetic bio-nanotools of considerate translational value have been reviewed. Perspectives on existent oncostrategies, their critical comparison with bio-nanocarriers, and issues hampering their clinical bench side to bed transformation have also been summarized.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India
| | - Mayur Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|