1
|
Najm MAA, Shakir HA, Hasen ST, Jawad KH, Hasoon BA, Jabir MS, Issa AA, Albukhaty S, Gatasheh MK, Molla MH. Titanium dioxide nanoparticles augment Ciprofloxacin activity via Inhibition of biofilm formation for multidrug resistance bacteria in-vitro and insilco prediction study. Sci Rep 2025; 15:18014. [PMID: 40410449 PMCID: PMC12102197 DOI: 10.1038/s41598-025-93569-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/07/2025] [Indexed: 05/25/2025] Open
Abstract
The increasing of multi-drug among pathogenic microbes is rendering antibiotics ineffective. Consequently, efforts are now concentrated on addressing this challenge through developing novel antibiotics and enhancing existing ones. This study combined ciprofloxacin (CIP) with titanium dioxide nanoparticles (TiO2NPs). We characterized the prepared nanoparticles (NPs) using several methods, including UV-Vis spectra, XRD, FESEM, TEM, and FTIR. The well diffusion agar was used to study the antibacterial activity of ciprofloxacin (CIP) alone and combined with titanium dioxide nanoparticles CIP@TiO2NPs. CIP@TiO2NPs showed higher antibacterial activity against Klebsiella pneumoniae (K.pneumoniae) and Streptococcus mutans S.mutans. The CIP@TiO2NPs showed remarkable inhibitory properties compared to CIP alone and TiO2NP alone, with its inhibition zone 28.50 ± 0.20 and 17.50 ± 0.10 in K.pneumoniae and S.mutans, respectively. Insilico study was done on bacterial strains to describe the effective binding behavior towards the ciprofloxacin@TiO2 adsorption system. The best conformers, from 50 conformational adsorption systems, were analyzed with a significant favorable inhibition with binding energy values of -9.61 kcal/mol and - 9.40 kcal/mol with K.pneumoniae and S. mutans, respectively. The interaction between CIP@TiO2NPs nanoparticles and Klebsiella pneumonia (ID: 8JGW) was studied using 50 conformations. The results showed binding energies up to -9.61 kcal/mol, indicating high interaction efficacy. Compared to TiO2NPs and CIP alone, CIP@TiO2NPs displayed the highest antibacterial and anti-biofilm properties against pathogenic bacteria. CIP@TiO2NPs have demonstrated promising results, suggesting that they may prove to be a dependable treatment for K. pneumoniae and S.mutans in the future and a possible agent for reducing bacterial biofilm during bacterial infections.
Collapse
Affiliation(s)
- Mazin A A Najm
- Department of Pharmacy, Mazaya University College, Thi-Qar, Iraq
| | - Hussein A Shakir
- Laser & Optoelectronics Engineering Department, University of Technology, Baghdad, Iraq
| | - Sabah T Hasen
- Laser & Optoelectronics Engineering Department, University of Technology, Baghdad, Iraq
| | - Kareem H Jawad
- Laser & Optoelectronics Engineering Department, University of Technology, Baghdad, Iraq
| | - Buthenia A Hasoon
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq.
| | - Ali A Issa
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | | | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia.
| | - Mohammad H Molla
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
2
|
Cela EM, Urquiza D, Gómez MI, Gonzalez CD. New Weapons to Fight against Staphylococcus aureus Skin Infections. Antibiotics (Basel) 2023; 12:1477. [PMID: 37887178 PMCID: PMC10603739 DOI: 10.3390/antibiotics12101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
The treatment of Staphylococcus aureus skin and soft tissue infections faces several challenges, such as the increased incidence of antibiotic-resistant strains and the fact that the antibiotics available to treat methicillin-resistant S. aureus present low bioavailability, are not easily metabolized, and cause severe secondary effects. Moreover, besides the susceptibility pattern of the S. aureus isolates detected in vitro, during patient treatment, the antibiotics may never encounter the bacteria because S. aureus hides within biofilms or inside eukaryotic cells. In addition, vascular compromise as well as other comorbidities of the patient may impede proper arrival to the skin when the antibiotic is given parenterally. In this manuscript, we revise some of the more promising strategies to improve antibiotic sensitivity, bioavailability, and delivery, including the combination of antibiotics with bactericidal nanomaterials, chemical inhibitors, antisense oligonucleotides, and lytic enzymes, among others. In addition, alternative non-antibiotic-based experimental therapies, including the delivery of antimicrobial peptides, bioactive glass nanoparticles or nanocrystalline cellulose, phototherapies, and hyperthermia, are also reviewed.
Collapse
Affiliation(s)
- Eliana M. Cela
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Dolores Urquiza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Departamento de Investigaciones Biomédicas y Biotecnológicas, Universidad Maimónides, Buenos Aires C1405BCK, Argentina
| | - Marisa I. Gómez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Departamento de Investigaciones Biomédicas y Biotecnológicas, Universidad Maimónides, Buenos Aires C1405BCK, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Cintia D. Gonzalez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina; (E.M.C.); (D.U.); (M.I.G.)
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| |
Collapse
|
3
|
Arif W, Rana NF, Saleem I, Tanweer T, Khan MJ, Alshareef SA, Sheikh HM, Alaryani FS, AL-Kattan MO, Alatawi HA, Menaa F, Nadeem AY. Antibacterial Activity of Dental Composite with Ciprofloxacin Loaded Silver Nanoparticles. Molecules 2022; 27:7182. [PMID: 36364007 PMCID: PMC9658858 DOI: 10.3390/molecules27217182] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 08/26/2023] Open
Abstract
Resin composites have been widely used in dental restoration. However, polymerization shrinkage and resultant bacterial microleakage are major limitations that may lead to secondary caries. To overcome this, a new type of antibacterial resin composite containing ciprofloxacin-loaded silver nanoparticles (CIP-AgNPs) were synthesized. The chemical reduction approach successfully produced CIP-AgNPs, as demonstrated by FTIR, zeta potential, scanning electron microscopy, and ultraviolet-visible (UV-vis) spectroscopy. CIP-AgNPs were added to resin composites and the antibacterial activity of the dental composite discs were realized against Enterococcus faecalis, Streptococcus mutans, and the Saliva microcosm. The biocompatibility of modified resin composites was assessed and mechanical testing of modified dental composites was also performed. The results indicated that the antibacterial activity and compressive strength of resin composites containing CIP-AgNPs were enhanced compared to the control group. They were also biocompatible when compared to resin composites containing AgNPs. In short, these results established strong ground application for CIP-AgNP-modified dental composite resins.
Collapse
Affiliation(s)
- Wafa Arif
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad 44000, Pakistan
- Integrated Nanobiotechnology Laboratory, School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Nosheen Fatima Rana
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad 44000, Pakistan
- Integrated Nanobiotechnology Laboratory, School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Iqra Saleem
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad 44000, Pakistan
- Integrated Nanobiotechnology Laboratory, School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Tahreem Tanweer
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad 44000, Pakistan
- Integrated Nanobiotechnology Laboratory, School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Muhammad Jawad Khan
- Department of Robotics & Artificial Intelligence, School of Mechanical & Manufacturing Engineering, National University of Science & Technology, Islamabad 44000, Pakistan
| | | | - Huda M. Sheikh
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Fatima S. Alaryani
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Manal Othman AL-Kattan
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Hanan Ali Alatawi
- Department of Biological Sciences, University College of Haqel, Tabuk University, Tabuk 71491, Saudi Arabia
| | - Farid Menaa
- Internal Medicine and Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA
| | - Aroosa Younis Nadeem
- Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad 44000, Pakistan
| |
Collapse
|
4
|
Ibraheem DR, Hussein NN, Sulaiman GM, Mohammed HA, Khan RA, Al Rugaie O. Ciprofloxacin-Loaded Silver Nanoparticles as Potent Nano-Antibiotics against Resistant Pathogenic Bacteria. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162808. [PMID: 36014673 PMCID: PMC9415342 DOI: 10.3390/nano12162808] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/01/2023]
Abstract
Silver nanoparticles (AgNPs) have demonstrated numerous physicochemical, biological, and functional properties suitable for biomedical applications, including antibacterial and drug carrier properties. In the present study, the antibiotic, ciprofloxacin (CIP), was loaded onto AgNPs, which were synthesized via the chemical reduction method, thereby enhancing CIP's antibacterial activity against Gram-negative (Acinetobacter baumannii and Serratia marcescens) and Gram-positive (Staphylococcus aureus) bacterial strains. Polyethylene glycol-400 (PEG) was used to prepare an AgNPs-PEG conjugate with enhanced stability and to act as the linker between CIP and AgNPs, to produce the novel nanocomposite, AgNPs-PEG-CIP. The prepared AgNPs and their conjugates were characterized by ultraviolet-visible spectrophotometry, Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy, transmission electron microscopy, zeta potential analysis, and dynamic light scattering techniques. The inhibitory activity of AgNPs and their conjugates on the growths of pathogenic bacteria was assessed using the well-diffusion method. The results showed the enhanced antibacterial effects of AgNPs-CIP compared to CIP alone. The AgNPs-PEG-CIP nanocomposite showed excellent inhibitory effects against bacterial isolates, with its inhibition zones diameters reaching 39, 36, and 40 mm in S. aureus, A. baumannii, and S. marcescens, respectively. The minimum inhibitory concentration and minimum bactericidal concentration of fogNPs and their conjugates and their antibiofilm effects were also determined. The antioxidant potentials of AgNPs and their conjugates, tested via their 1,1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging ability, showed that the activity increased with increasing AgNPs concentration and the addition of the PEG and/or CIP. Overall, according to the results obtained in the present study, the new nanocomposite, AgNPs-PEG-CIP, showed the highest antibacterial, antibiofilm, and antioxidant activity against the pathogenic bacteria tested, compared to CIP alone. The preparation has high clinical potential for prospective use as an antibacterial agent.
Collapse
Affiliation(s)
- Duaa R. Ibraheem
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Nehia N. Hussein
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah 51911, Saudi Arabia
| |
Collapse
|