1
|
Abuzeyad OH, El-Khawaga AM, Tantawy H, Gobara M, Elsayed MA. Merits photocatalytic activity of rGO/zinc copper ferrite magnetic nanocatalyst for photodegradation of methylene blue (MB) dye. DISCOVER NANO 2025; 20:2. [PMID: 39753775 PMCID: PMC11699014 DOI: 10.1186/s11671-024-04162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
The world is now facing a water scarcity crisis due to waste, pollution, and uneven distribution of freshwater resources, which are limited. Thus, the creation of innovative, economical, and effective methods for purifying water is crucial. Here, the photo-assisted degradation of methylene blue (MB) dye under visible light and UV was achieved by using RGO photocatalyst loaded with Zn0.5Cu0.5Fe2O4 in three different loaded 10%, 20%, and 30% called MRGO 10, MRGO 20, and MRGO 30. Furthermore, all prepared samples was characterized by X-ray diffraction (XRD), fourier transformation infrared (FTIR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and Raman analysis. After 40 min, the high photocatalytic efficacy effectively eliminated about 95.2% of the 10 ppm MB using 20 mg of MRGO 20 NPs at pH9 Visible light. From the results, the photocatalytic activity of MRGO 20 reduced to 54.6% after five cycles of methylene blue (MB) dye degradation. The produced samples' observed efficacy in both UV and visible light may encourage continued research into more effective photocatalysts for the filtration of water.
Collapse
Affiliation(s)
- Osama H Abuzeyad
- Department of Chemical Engineering, Military Technical College (MTC), Cairo, Egypt.
| | - Ahmed M El-Khawaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, Suez, 43511, Egypt.
| | - Hesham Tantawy
- Department of Chemical Engineering, Military Technical College (MTC), Cairo, Egypt
| | - Mohamed Gobara
- Department of Chemical Engineering, Military Technical College (MTC), Cairo, Egypt
| | - Mohamed A Elsayed
- Department of Chemical Engineering, Military Technical College (MTC), Cairo, Egypt
| |
Collapse
|
2
|
Farahani M, Mousavi-Kamazani M, Salarvand Z. Synthesis and characterization of Ce 0.5Bi 0.5VO 4/rGO nanocomposite by sonochemical method for photocatalytic desulfurization of petroleum derivatives. Sci Rep 2023; 13:14094. [PMID: 37644065 PMCID: PMC10465569 DOI: 10.1038/s41598-023-41387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
In order to improve the desulfurization efficiency of petroleum derivatives, Ce0.5Bi0.5VO4/rGO nanocomposite was synthesized by sonochemical method. The prepared nanocomposites were characterized by XRD, FESEM, EDS, FT-IR, BET, and DRS analyses. XRD analysis shows that the synthesized nanocomposite is amorphous. FESEM images showed that nanostructures with a smaller particle size distribution were synthesized under optimal conditions, i.e. controlling the synthesis temperature between 0 and 5 °C. The results of desulfurization showed that nanocomposites containing reduced graphene oxide (rGO) have higher photocatalytic efficiency than pure samples, the main reason of which can be better charge separation in the samples through the π electron in the rGO structure. The highest amount of desulfurization of CeVO4/rGO, BiVO4/rGO, and Ce0.5Bi0.5VO4/rGO nanocomposites was 95.62, 91.25, and 96.38%, respectively, after exposure to UV light for 40 min. The enhancement of photocatalytic activity of Ce0.5Bi0.5VO4/rGO composite could be attributed to the efficient separation of electron-hole pairs and the inhibition of recombination. Desulfurization in the presence of hydrochloric acid and hydrogen peroxide increased the efficiency by 12%, which is a significant amount.
Collapse
Affiliation(s)
- Mohadeseh Farahani
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Mehdi Mousavi-Kamazani
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
| | - Zohreh Salarvand
- Department of Chemistry, Chemistry and Petrochemistry Research Center, Institute of Standard and Industrial Research of Iran (ISIRI), Karaj, 3174734563, Iran
| |
Collapse
|
3
|
Wang Y, Jin Y, Jia M, Ruan H, Tao X, Liu X, Lu G, Zhang X. Enhanced Visible-Light Photocatalytic Activities of CeVO4-V2O3 Composite: Effect of Ethylene Glycol. Catalysts 2023. [DOI: 10.3390/catal13040659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
CeVO4-V2O3 composites were prepared by simple hydrothermal method, and the effects of ethylene glycol(EG) on the products were studied by XRD, N2 adsorption–desorption, SEM, EDS, XPS, PL and UV-vis spectra. The characterization reveals a slight decrease in surface area and a slight enhancement of visible light absorption in the final sample, while the crystalline phase, morphology and separation efficiency of the collective carriers are severely affected by the EG. At the same time, the photocatalytic effect of CeVO4-V2O3 composites was evaluated by the degradation rate of methylene blue (MB) under simulated visible light. The sample for 10 mL EG obtained the highest efficiency of 96.9%, while the one for 15 mL EG showed the lowest efficiency of 67.5% within 300 min. The trapping experiments and ESR experiment showed that the contribution of active species to the photocatalytic degradation of MB was ∙OH > h+ > ∙O2− in descending order, and a possible degradation mechanism was proposed.
Collapse
|
4
|
Alam MW, Naeem S, Usman SM, Kanwal Q, BaQais A, Aldughaylibi FS, Nahvi I, Zaidi N. Cerium Oxide Nanorods Synthesized by Dalbergia sissoo Extract for Antioxidant, Cytotoxicity, and Photocatalytic Applications. Molecules 2022; 27:molecules27238188. [PMID: 36500279 PMCID: PMC9735491 DOI: 10.3390/molecules27238188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
In this study, cerium oxide nanorods (CeO2-NRs) were synthesized by using the phytochemicals present in the Dalbergia sissoo extract. The physiochemical characteristics of the as-prepared CeO2-NRs were investigated by using ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction analysis (XRD). The SEM and UV-VIS analyses revealed that the acquired nanomaterials possessed a rod-like morphology while the XRD results further confirmed that the synthesized NRs exhibited a cubic crystal lattice system. The antioxidant capacity of the synthesized CeO2-NRs was investigated by using several in vitro biochemical assays. It was observed that the synthesized NRs exhibited better antioxidant potential in comparison to the industrial antioxidant of the butylated hydroxyanisole (BHA) in 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The biochemical assays, including lipid peroxidation (LPO), total antioxidant capacity (TAC), and catalase activity (CAT), were also performed in the human lymphocytes incubated with the CeO2-NRs to investigate the impact of the NRs on these oxidative biomarkers. Enhanced reductive capabilities were observed in all the assays, revealing that the NRs possess excellent antioxidant properties. Moreover, the cytotoxic potential of the CeO2-NRs was also investigated with the MTT assay. The CeO2-NRs were found to effectively kill off the cancerous cells (MCF-7 human breast cancer cell line), further indicating that the synthesized NRs exhibit anticancer potential as well. One of the major applications studied for the prepared CeO2-NRs was performing the statistical optimization of the photocatalytic degradation reaction of the methyl orange (MO) dye. The reaction was optimized by using the technique of response surface methodology (RSM). This advanced approach facilitates the development of the predictive model on the basis of central composite design (CCD) for this degradation reaction. The maximum degradation of 99.31% was achieved at the experimental optimized conditions, which corresponded rather well with the predicted percentage degradation values of 99.58%. These results indicate that the developed predictive model can effectively explain the performed experimental reaction. To conclude, the CeO2-NRs exhibited excellent results for multiple applications.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (M.W.A.); (S.N.)
| | - Sumaira Naeem
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
- Correspondence: (M.W.A.); (S.N.)
| | | | - Qudsia Kanwal
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Amal BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fatimah Saeed Aldughaylibi
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Insha Nahvi
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Noushi Zaidi
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
5
|
Ben Smida Y, Oyewo O, Ramaila S, Mavuru L, Marzouki R, Onwudiwe DC, Hamzaoui AH. Synthesis of Cu9S5, SnS2, and Cu2SnS3 Nanoparticles from Precursor Complexes and Their Photodegradation Activities on Methyl Orange. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Ghotekar S, Pansambal S, Lin KYA, Pore D, Oza R. Recent Advances in Synthesis of CeVO4 Nanoparticles and Their Potential Scaffold for Photocatalytic Applications. Top Catal 2022. [DOI: 10.1007/s11244-022-01630-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|