1
|
Zaed MA, Abdullah N, Tan KH, Hossain MH, Saidur R. Empowering Green Energy Storage Systems with MXene for a Sustainable Future. CHEM REC 2024; 24:e202400062. [PMID: 39318085 DOI: 10.1002/tcr.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/30/2024] [Indexed: 09/26/2024]
Abstract
Green energy storage systems play a vital role in enabling a sustainable future by facilitating the efficient integration and utilization of renewable energy sources. The main problems related to two-dimensional (2D) materials are their difficult synthesis process, high cost, and bulk production, which hamper their performance. In recent years, MXenes have emerged as highly promising materials for enhancing the performance of energy storage devices due to their unique properties, including their high surface area, excellent electrical and thermal conductivity, and exceptional chemical stability. This paper presents a comprehensive scientific approach that explores the potential of MXenes for empowering green energy storage systems. Which indicates the novelty of the article. The paper reviews the latest advances in MXene synthesis techniques. Furthermore, investigates the application of MXenes in various energy storage technologies, such as lithium-ion batteries, supercapacitors, and emerging energy storage devices. The utilization of MXenes as electrodes in flexible and transparent energy storage devices is also discussed. Moreover, the paper highlights the potential of MXenes in addressing key challenges in energy storage, including enhancing energy storage capacity, improving cycling stability, and promoting fast charging and discharging rates. Additionally, industrial application and cost estimation of MXenes are explored. As the output of the work, we analyzed that HF and modified acid (LiF and HCl) are the established methods for synthesis. Due to high electrical conductivity, MXene materials are showing extraordinary results in energy storage and related applications. Making a composite hydrothermal method is one of the established methods. This scientific paper underscores the significant contributions of MXenes in advancing green energy storage systems, paving the way for a sustainable future driven by renewable energy sources. To facilitate the research, this article includes technical challenges and future recommendations for further research gaps in the topic.
Collapse
Affiliation(s)
- M A Zaed
- Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Norulsamani Abdullah
- Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - K H Tan
- Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - M H Hossain
- Department of Electrical and Electronic Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - R Saidur
- Research Center for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
- School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| |
Collapse
|
2
|
Cho S, Lim J, Seo Y. Flexible Solid Supercapacitors of Novel Nanostructured Electrodes Outperform Most Supercapacitors. ACS OMEGA 2022; 7:37825-37833. [PMID: 36312342 PMCID: PMC9609059 DOI: 10.1021/acsomega.2c04822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Sustainable and scalable fabrication of electrode materials with high energy and power densities is paramount for the development of future electrochemical energy storage devices. The electrode material of a supercapacitor should have high electrical conductivity, good thermal and chemical stability, and a high surface area per unit volume (or per unit mass). Researchers have made great efforts to use two-dimensional (2D) nanomaterials, but the separated 2D plates are re-stacked during processing for electrode fabrication, impeding the transport of ions and reducing the number of active sites. We developed a novel process for manufacturing thin and flexible electrodes using a 2D material (MXene,Ti3AlC2) and a conducting polymer (poly(3,4-ethylenedioxythiophene), PEDOT). Because the PEDOT layer is electrochemically synthesized, it does not contain the activator poly(styrene sulfonate). The electrospray deposition technique solves the restacking problem and facilitates the infilling of the gel electrolyte by forming a highly porous open structure across the entire electrode. In the PEDOT/MXene multilayered electrode, the double-layer capacitance increased substantially because of a dramatic increase in the number of accessible sites through the MXene layer. Although applied to solid supercapacitors, these new supercapacitors outperform most aqueous electrolyte supercapacitors as well as other solid supercapacitors.
Collapse
|
3
|
Okonkwo UC, Idumah CI, Okafor CE, Ohagwu CC, Aronu ME, Okokpujie IP, Chukwu NN, Chukwunyelu CE. Development, Characterization, and Properties of Polymeric Nanoarchitectures for Radiation Attenuation. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02420-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|