1
|
Spinelli A, Carrano FM, Laino ME, Andreozzi M, Koleth G, Hassan C, Repici A, Chand M, Savevski V, Pellino G. Artificial intelligence in colorectal surgery: an AI-powered systematic review. Tech Coloproctol 2023; 27:615-629. [PMID: 36805890 DOI: 10.1007/s10151-023-02772-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Artificial intelligence (AI) has the potential to revolutionize surgery in the coming years. Still, it is essential to clarify what the meaningful current applications are and what can be reasonably expected. This AI-powered review assessed the role of AI in colorectal surgery. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-compliant systematic search of PubMed, Embase, Scopus, Cochrane Library databases, and gray literature was conducted on all available articles on AI in colorectal surgery (from January 1 1997 to March 1 2021), aiming to define the perioperative applications of AI. Potentially eligible studies were identified using novel software powered by natural language processing (NLP) and machine learning (ML) technologies dedicated to systematic reviews. Out of 1238 articles identified, 115 were included in the final analysis. Available articles addressed the role of AI in several areas of interest. In the preoperative phase, AI can be used to define tailored treatment algorithms, support clinical decision-making, assess the risk of complications, and predict surgical outcomes and survival. Intraoperatively, AI-enhanced surgery and integration of AI in robotic platforms have been suggested. After surgery, AI can be implemented in the Enhanced Recovery after Surgery (ERAS) pathway. Additional areas of applications included the assessment of patient-reported outcomes, automated pathology assessment, and research. Available data on these aspects are limited, and AI in colorectal surgery is still in its infancy. However, the rapid evolution of technologies makes it likely that it will increasingly be incorporated into everyday practice.
Collapse
Affiliation(s)
- A Spinelli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, MI, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy.
| | - F M Carrano
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - M E Laino
- Artificial Intelligence Center, Humanitas Clinical and Research Center-IRCCS, Via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - M Andreozzi
- Department of Clinical Medicine and Surgery, University "Federico II" of Naples, Naples, Italy
| | - G Koleth
- Department of Gastroenterology and Hepatology, Hospital Selayang, Selangor, Malaysia
| | - C Hassan
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - A Repici
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - M Chand
- Wellcome EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, UK
| | - V Savevski
- Artificial Intelligence Center, Humanitas Clinical and Research Center-IRCCS, Via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - G Pellino
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
- Colorectal Surgery, Vall d'Hebron University Hospital, Universitat Autonoma de Barcelona UAB, Barcelona, Spain
| |
Collapse
|
2
|
Maheshwari K, Cywinski JB, Papay F, Khanna AK, Mathur P. Artificial Intelligence for Perioperative Medicine: Perioperative Intelligence. Anesth Analg 2023; 136:637-645. [PMID: 35203086 DOI: 10.1213/ane.0000000000005952] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The anesthesiologist's role has expanded beyond the operating room, and anesthesiologist-led care teams can deliver coordinated care that spans the entire surgical experience, from preoperative optimization to long-term recovery of surgical patients. This expanded role can help reduce postoperative morbidity and mortality, which are regrettably common, unlike rare intraoperative mortality. Postoperative mortality, if considered a disease category, will be the third leading cause of death just after heart disease and cancer. Rapid advances in technologies like artificial intelligence provide an opportunity to build safe perioperative practices. Artificial intelligence helps by analyzing complex data across disparate systems and producing actionable information. Using artificial intelligence technologies, we can critically examine every aspect of perioperative medicine and devise innovative value-based solutions that can potentially improve patient safety and care delivery, while optimizing cost of care. In this narrative review, we discuss specific applications of artificial intelligence that may help advance all aspects of perioperative medicine, including clinical care, education, quality improvement, and research. We also discuss potential limitations of technology and provide our recommendations for successful adoption.
Collapse
Affiliation(s)
| | | | | | - Ashish K Khanna
- Department of Anesthesiology, Section on Critical Care Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Outcomes Research Consortium, Cleveland, Ohio
| | | |
Collapse
|
3
|
Aspland E, Harper PR, Gartner D, Webb P, Barrett-Lee P. Modified Needleman-Wunsch algorithm for clinical pathway clustering. J Biomed Inform 2021; 115:103668. [PMID: 33359110 PMCID: PMC7973729 DOI: 10.1016/j.jbi.2020.103668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 01/01/2023]
Abstract
Clinical pathways are used to guide clinicians to provide a standardised delivery of care. Because of their standardisation, the aim of clinical pathways is to reduce variation in both care process and patient outcomes. When learning clinical pathways from data through data mining, it is common practice to represent each patient pathway as a string corresponding to their movements through activities. Clustering techniques are popular methods for pathway mining, and therefore this paper focuses on distance metrics applied to string data for k-medoids clustering. The two main aims are to firstly, develop a technique that seamlessly integrates expert information with data and secondly, to develop a string distance metric for the purpose of process data. The overall goal was to allow for more meaningful clustering results to be found by adding context into the string similarity calculation. Eight common distance metrics and their applicability are discussed. These distance metrics prove to give an arbitrary distance, without consideration for context, and each produce different results. As a result, this paper describes the development of a new distance metric, the modified Needleman-Wunsch algorithm, that allows for expert interaction with the calculation by assigning groupings and rankings to activities, which provide context to the strings. This algorithm has been developed in partnership with UK's National Health Service (NHS) with the focus on a lung cancer pathway, however the handling of the data and algorithm allows for application to any disease type. This method is contained within Sim.Pro.Flow, a publicly available decision support tool.
Collapse
Affiliation(s)
- Emma Aspland
- School of Mathematics, Cardiff University, Cardiff, United Kingdom.
| | - Paul R Harper
- School of Mathematics, Cardiff University, Cardiff, United Kingdom
| | - Daniel Gartner
- School of Mathematics, Cardiff University, Cardiff, United Kingdom
| | - Philip Webb
- Velindre Cancer Centre, Cardiff, United Kingdom
| | | |
Collapse
|
4
|
PelvEx Collaborative. Predicting outcomes of pelvic exenteration using machine learning. Colorectal Dis 2020; 22:1933-1940. [PMID: 32627312 DOI: 10.1111/codi.15235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
AIM We aim to compare machine learning with neural network performance in predicting R0 resection (R0), length of stay > 14 days (LOS), major complication rates at 30 days postoperatively (COMP) and survival greater than 1 year (SURV) for patients having pelvic exenteration for locally advanced and recurrent rectal cancer. METHOD A deep learning computer was built and the programming environment was established. The PelvEx Collaborative database was used which contains anonymized data on patients who underwent pelvic exenteration for locally advanced or locally recurrent colorectal cancer between 2004 and 2014. Logistic regression, a support vector machine and an artificial neural network (ANN) were trained. Twenty per cent of the data were used as a test set for calculating prediction accuracy for R0, LOS, COMP and SURV. Model performance was measured by plotting receiver operating characteristic (ROC) curves and calculating the area under the ROC curve (AUROC). RESULTS Machine learning models and ANNs were trained on 1147 cases. The AUROC for all outcome predictions ranged from 0.608 to 0.793 indicating modest to moderate predictive ability. The models performed best at predicting LOS > 14 days with an AUROC of 0.793 using preoperative and operative data. Visualized logistic regression model weights indicate a varying impact of variables on the outcome in question. CONCLUSION This paper highlights the potential for predictive modelling of large international databases. Current data allow moderate predictive ability of both complex ANNs and more classic methods.
Collapse
|
5
|
Saugel B, Critchley LAH, Kaufmann T, Flick M, Kouz K, Vistisen ST, Scheeren TWL. Journal of Clinical Monitoring and Computing end of year summary 2019: hemodynamic monitoring and management. J Clin Monit Comput 2020; 34:207-219. [PMID: 32170569 PMCID: PMC7080677 DOI: 10.1007/s10877-020-00496-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Bernd Saugel
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Outcomes Research Consortium, Cleveland, OH, USA
| | - Lester A H Critchley
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong.,The Belford Hospital, Fort William, The Highlands, Scotland, UK
| | - Thomas Kaufmann
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Moritz Flick
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karim Kouz
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon T Vistisen
- Department of Anaesthesia and Intensive Care, Aarhus University, Aarhus, Denmark
| | - Thomas W L Scheeren
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
6
|
Maheshwari K, Ruetzler K, Saugel B. Perioperative intelligence: applications of artificial intelligence in perioperative medicine. J Clin Monit Comput 2019; 34:625-628. [PMID: 31468256 DOI: 10.1007/s10877-019-00379-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/19/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Kamal Maheshwari
- Departments of General Anesthesia and Outcomes Research, Center for Perioperative Intelligence, Anesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue/E-31, Cleveland, OH, 44195, USA.
| | - Kurt Ruetzler
- Departments of General Anesthesia and Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, USA
| | - Bernd Saugel
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|