1
|
Michard F, Romagnoli S, Saugel B. Make my haemodynamic monitor GREEN: sustainable monitoring solutions. Br J Anaesth 2024; 133:1367-1370. [PMID: 38752841 DOI: 10.1016/j.bja.2024.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 11/19/2024] Open
Abstract
Anaesthesiologists overwhelmingly favour pulse wave analysis techniques as their primary method to monitor cardiac output during high-risk noncardiac surgery. In patients with a radial arterial catheter in place, pulse wave analysis techniques have the advantage of instantly providing non-operator-dependent and continuous haemodynamic monitoring information. Green pulse wave analysis techniques working with any standard pressure transducer are as reliable as techniques requiring dedicated pressure transducers. They have the advantage of minimising plastic waste and related carbon dioxide emissions, and also significantly reducing hospital costs. The future integration of pulse wave analysis algorithms into multivariable bedside monitors, obviating the need for standalone haemodynamic monitors, could lead to wider use of haemodynamic monitoring solutions by further reducing their cost and carbon footprint.
Collapse
Affiliation(s)
| | - Stefano Romagnoli
- Department of Anesthesiology and Intensive Care, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Bernd Saugel
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Le Gall A, Vallée F, Joachim J, Hong A, Matéo J, Mebazaa A, Gayat E. Estimation of cardiac output variations induced by hemodynamic interventions using multi-beat analysis of arterial waveform: a comparative off-line study with transesophageal Doppler method during non-cardiac surgery. J Clin Monit Comput 2022; 36:501-510. [PMID: 33687601 PMCID: PMC9123019 DOI: 10.1007/s10877-021-00679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 01/08/2021] [Indexed: 11/25/2022]
Abstract
Multi-beat analysis (MBA) of the radial arterial pressure (AP) waveform is a new method that may improve cardiac output (CO) estimation via modelling of the confounding arterial wave reflection. We evaluated the precision and accuracy using the trending ability of the MBA method to estimate absolute CO and variations (ΔCO) during hemodynamic challenges. We reviewed the hemodynamic challenges (fluid challenge or vasopressors) performed when intra-operative hypotension occurred during non-cardiac surgery. The CO was calculated offline using transesophageal Doppler (TED) waveform (COTED) or via application of the MBA algorithm onto the AP waveform (COMBA) before and after hemodynamic challenges. We evaluated the precision and the accuracy according to the Bland & Altman method. We also assessed the trending ability of the MBA by evaluating the percentage of concordance with 15% exclusion zone between ΔCOMBA and ΔCOTED. A non-inferiority margin was set at 87.5%. Among the 58 patients included, 23 (40%) received at least 1 fluid challenge, and 46 (81%) received at least 1 bolus of vasopressors. Before treatment, the COTED was 5.3 (IQR [4.1-8.1]) l min-1, and the COMBA was 4.1 (IQR [3-5.4]) l min-1. The agreement between COTED and COMBA was poor with a 70% percentage error. The bias and lower and upper limits of agreement between COTED and COMBA were 0.9 (CI95 = 0.82 to 1.07) l min-1, -2.8 (CI95 = -2.71 to-2.96) l min-1 and 4.7 (CI95 = 4.61 to 4.86) l min-1, respectively. After hemodynamic challenge, the percentage of concordance (PC) with 15% exclusion zone for ΔCO was 93 (CI97.5 = 90 to 97)%. In this retrospective offline analysis, the accuracy, limits of agreements and percentage error between TED and MBA for the absolute estimation of CO were poor, but the MBA could adequately track induced CO variations measured by TED. The MBA needs further evaluation in prospective studies to confirm those results in clinical practice conditions.
Collapse
Affiliation(s)
- Arthur Le Gall
- Inria Paris-Saclay, 01, avenue Honoré d'Estienne d'Orves, 91120, Palaiseau, France.
- LMS, École Polytechnique, 91128, Palaiseau Cedex, France.
- Anesthesiology and Intensive Care Department, Lariboisière - Saint Louis - Fernand Widal University Hospitals, University of Paris, 02 rue Ambroise Paré, 75010, Paris, France.
- Université de Paris, 85 boulevard Saint-Germain, 75006, Paris, France.
| | - Fabrice Vallée
- Inria Paris-Saclay, 01, avenue Honoré d'Estienne d'Orves, 91120, Palaiseau, France
- LMS, École Polytechnique, 91128, Palaiseau Cedex, France
- Anesthesiology and Intensive Care Department, Lariboisière - Saint Louis - Fernand Widal University Hospitals, University of Paris, 02 rue Ambroise Paré, 75010, Paris, France
- UMR-S 942, INSERM, 02 rue Ambroise Paré, 75010, Paris, France
| | - Jona Joachim
- Inria Paris-Saclay, 01, avenue Honoré d'Estienne d'Orves, 91120, Palaiseau, France
- LMS, École Polytechnique, 91128, Palaiseau Cedex, France
- Anesthesiology and Intensive Care Department, Lariboisière - Saint Louis - Fernand Widal University Hospitals, University of Paris, 02 rue Ambroise Paré, 75010, Paris, France
- UMR-S 942, INSERM, 02 rue Ambroise Paré, 75010, Paris, France
| | - Alex Hong
- Anesthesiology and Intensive Care Department, Lariboisière - Saint Louis - Fernand Widal University Hospitals, University of Paris, 02 rue Ambroise Paré, 75010, Paris, France
- Université de Paris, 85 boulevard Saint-Germain, 75006, Paris, France
| | - Joaquim Matéo
- Anesthesiology and Intensive Care Department, Lariboisière - Saint Louis - Fernand Widal University Hospitals, University of Paris, 02 rue Ambroise Paré, 75010, Paris, France
| | - Alexandre Mebazaa
- Anesthesiology and Intensive Care Department, Lariboisière - Saint Louis - Fernand Widal University Hospitals, University of Paris, 02 rue Ambroise Paré, 75010, Paris, France
- UMR-S 942, INSERM, 02 rue Ambroise Paré, 75010, Paris, France
- Université de Paris, 85 boulevard Saint-Germain, 75006, Paris, France
| | - Etienne Gayat
- Anesthesiology and Intensive Care Department, Lariboisière - Saint Louis - Fernand Widal University Hospitals, University of Paris, 02 rue Ambroise Paré, 75010, Paris, France
- UMR-S 942, INSERM, 02 rue Ambroise Paré, 75010, Paris, France
- Université de Paris, 85 boulevard Saint-Germain, 75006, Paris, France
| |
Collapse
|
3
|
Gao Y, Wang HL, Zhang ZJ, Pan CK, Wang Y, Zhu YC, Xie FJ, Han QY, Zheng JB, Dai QQ, Ji YY, Du X, Chen PF, Yue CS, Wu JH, Kang K, Yu KJ. A Standardized Step-by-Step Approach for the Diagnosis and Treatment of Sepsis. J Intensive Care Med 2022; 37:1281-1287. [PMID: 35285730 DOI: 10.1177/08850666221085181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sepsis is the major culprit of death among critically ill patients who are hospitalized in intensive care units (ICUs). Although sepsis-related mortality is steadily declining year-by-year due to the continuous understanding of the pathophysiological mechanism on sepsis and improvement of the bundle treatment, sepsis-associated hospitalization is rising worldwide. Surviving Sepsis Campaign (SSC) guidelines are continuously updating, while their content is extremely complex and comprehensive for a precisely implementation in clinical practice. As a consequence, a standardized step-by-step approach for the diagnosis and treatment of sepsis is particularly important. In the present study, we proposed a standardized step-by-step approach for the diagnosis and treatment of sepsis using our daily clinical experience and the latest researches, which is close to clinical practice and is easy to implement. The proposed approach may assist clinicians to more effectively diagnose and treat septic patients and avoid the emergence of adverse clinical outcomes.
Collapse
Affiliation(s)
- Yang Gao
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Liang Wang
- Department of Critical Care Medicine, 105821The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhao Jin Zhang
- Department of Critical Care Medicine, The Yichun Forestry Administration Central Hospital, Yichun, China
| | - Chang Kun Pan
- Department of Critical Care Medicine, The Jiamusi Cancer Hospital, Jiamusi, China
| | - Ying Wang
- Department of Critical Care Medicine, The First People Hospital of Mudanjiang city, Mudanjiang, China
| | - Yu Cheng Zhu
- Department of Critical Care Medicine, The Hongxinglong Hospital of Beidahuang Group, Shuangyashan, China
| | - Feng Jie Xie
- Department of Critical Care Medicine, The Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Qiu Yuan Han
- Department of Critical Care Medicine, 105821The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Bo Zheng
- Department of Critical Care Medicine, 105821The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing Qing Dai
- Department of Critical Care Medicine, 105821The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Yuan Ji
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Du
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Fei Chen
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuang Shi Yue
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ji Han Wu
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Kang
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Jiang Yu
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|