1
|
Li X, Chang P, Liu X, Zhao Z, Duan Y, Zhang W. Validation of a method for estimating pulmonary dead space in ventilated beagles to correct exhaled propofol concentration in mixed air. BMC Vet Res 2025; 21:9. [PMID: 39773486 PMCID: PMC11706130 DOI: 10.1186/s12917-024-04458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Mixed exhaled air has been widely used to determine exhaled propofol concentrations with online analyzers, but changes in dead space proportions may lead to inaccurate assessments of critical drug concentration data. This study proposes a method to correct propofol concentration in mixed air by estimating pulmonary dead space through reconstructing volumetric capnography (Vcap) from time-CO2 and time-volume curves, validated with vacuum ultraviolet time-of-flight mass spectrometry (VUV-TOF MS). METHODS Existing monitoring parameters, including time-volume and time-CO2 curves, were used to determine Vcap. The ratio of physiological dead space to tidal volume (VD/VT) was calculated using Bohr's formula. Additionally, an animal experiment on beagles was conducted with continuous propofol administration until a pseudo-steady state in exhaled propofol concentration was achieved. The propofol concentration in mixed air (CONCmix), and in alveolar air combined with N2 (CONCAN) were measured using VUV-TOF MS to calculate VD/VT. The agreements between VD/VT values from the two methods, along with the predicted CONCAN values based on Vcap and the actual measured CONCAN values were evaluated using the intraclass correlation coefficient (ICC) and Pearson correlation analysis. RESULTS After 30 min of continuous propofol administration, a stable respiratory cycle was selected for analysis in each beagle. The calculated VD/VT-Bohr values were 0.535 for beagle A, 0.544 for beagle B, and 0.552 for beagle C. Additionally, based on CONCmix and CONCAN, the calculated VD/VT-VUV-TOF MS values were 0.494, 0.504, and 0.513, respectively. Strong agreement between the two methods was demonstrated by an ICC of 0.994 (P = 0.003) and Pearson's r of 0.995 (P = 0.045). Additionally, the predicted CONCAN values from mixed exhaled air (5.11 parts per billion by volume (ppbv) for beagle A, 5.93 ppbv for beagle B, and 2.56 ppbv for beagle C) showed strong agreement with the actual CONCAN values, with an ICC of 0.996 (P = 0.002) and Pearson's r of 0.994 (P = 0.046). CONCLUSION The physiological dead space to tidal volume ratio from mixed air in beagles can be accurately measured using the existing time-volume and time-CO2 curves from the anesthesia machine, enabling corrections of exhaled propofol concentrations in mixed air samples.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital,, Sichuan University, Chengdu, China
| | - Pan Chang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital,, Sichuan University, Chengdu, China
| | - Xing Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital,, Sichuan University, Chengdu, China
| | - Zhongjun Zhao
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Yixiang Duan
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Wensheng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital,, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Klein-Blommert R, Markhorst DG, Bem RA. Exhaled CO2: No Volume to Waste. Pediatr Crit Care Med 2024; 25:860-863. [PMID: 39240665 DOI: 10.1097/pcc.0000000000003570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Affiliation(s)
- Rozalinde Klein-Blommert
- Pediatric Intensive Care Unit, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Dick G Markhorst
- Pediatric Intensive Care Unit, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Reinout A Bem
- Pediatric Intensive Care Unit, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Oliveira MH, Gushiken LFS, Pellizzon CH, Ferreira FP, Mancera PFA. Mathematical and numerical analyses of cellular, molecular and angiogenic parameters of a rat skin wound healing model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3765. [PMID: 37551732 DOI: 10.1002/cnm.3765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/11/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023]
Abstract
The inflammatory phase is an important event in the skin wound healing process. The deposition of granulation tissue in the wound bed and the rebuilding of the vascular network occur as inflammation diminishes. An angiogenic component in the formation of granulation tissue is the secretion of vascular endothelial growth factor, which assists in the chemotaxis, proliferation, and replication of fibroblasts. In this paper, we develop a mathematical model of skin wound healing angiogenic factors based on inflammatory cells (macrophages and neutrophils) and mediators (interleukin 6 and interleukin 10). We highlight the importance of this process in vascular endothelial growth factor release and in the formation of new capillary tips. We used a mathematical model of partial differential equations based on the reaction-diffusion-advection equations. In order to calibrate the parameters, we considered an in vivo model composed by four treatments: hydroalcoholic extract and oil-resin of Copaifera langsdorffii at 10% concentration, collagenase, and Lanette cream. Using the laboratory data for the wound edge, our mathematical model estimated the values of vascular endothelial growth factor concentration, and tips density in the center of the wound with a maximum error of 2.9%, and predicted healing time required for each treatment. The region of viability for the parameters, in the proposed model, was found through numerical simulations from the Interleukin 6 and 10 dysregulation and we obtained that, among the parameters analyzed, the greatest influencer in the dynamics of the system is the one, which represents the production of Interleukin 10 during phagocytosis.
Collapse
Affiliation(s)
- Marta H Oliveira
- Department of Mathematics, Federal University of Uberlândia, Uberlandia, Brazil
- Biometrics Graduate Program, São Paulo State University, São Paulo, Brazil
| | - Lucas F S Gushiken
- Biotechnology Graduate Program, São Paulo State University, São Paulo, Brazil
| | | | | | - Paulo F A Mancera
- Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| |
Collapse
|
4
|
Soares JHN, Raff GW, Fineman JR, Datar SA. Respiratory mechanics and gas exchange in an ovine model of congenital heart disease with increased pulmonary blood flow and pressure. Front Physiol 2023; 14:1188824. [PMID: 37362431 PMCID: PMC10288580 DOI: 10.3389/fphys.2023.1188824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
In a model of congenital heart disease (CHD), we evaluated if chronically increased pulmonary blood flow and pressure were associated with altered respiratory mechanics and gas exchange. Respiratory mechanics and gas exchange were evaluated in 6 shunt, 7 SHAM, and 7 control age-matched lambs. Lambs were anesthetized and mechanically ventilated for 15 min with tidal volume of 10 mL/kg, positive end-expiratory pressure of 5 cmH2O, and inspired oxygen fraction of 0.21. Respiratory system, lung and chest wall compliances (Crs, CL and Ccw, respectively) and resistances (Rrs, RL and Rcw, respectively), and the profile of the elastic pressure-volume curve (%E2) were evaluated. Arterial blood gases and volumetric capnography variables were collected. Comparisons between groups were performed by one-way ANOVA followed by Tukey-Kramer test for normally distributed data and with Kruskal-Wallis test followed by Steel-Dwass test for non-normally distributed data. Average Crs and CL in shunt lambs were 30% and 58% lower than in control, and 56% and 68% lower than in SHAM lambs, respectively. Ccw was 52% and 47% higher and Rcw was 53% and 40% lower in shunt lambs compared to controls and SHAMs, respectively. No difference in %E2 was identified between groups. No difference in respiratory mechanics was observed between control and SHAM lambs. In shunt lambs, Rcw, Crs and CL were decreased and Ccw was increased when compared to control and SHAM lambs. Pulmonary gas exchange did not seem to be impaired in shunt lambs when compared to controls and SHAMs.
Collapse
Affiliation(s)
- Joao Henrique N. Soares
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Gary W. Raff
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Jeffrey R. Fineman
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Sanjeev A. Datar
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
5
|
Chen Y, Zeng Q. Temporal transcriptional patterns of cyanophage genes suggest synchronized infection of cyanobacteria in the oceans. MICROBIOME 2020; 8:68. [PMID: 32430017 PMCID: PMC7238727 DOI: 10.1186/s40168-020-00842-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Based on the peak expression times during infection, early, middle, and late genes have been characterized in viruses (cyanophages) that infect the unicellular cyanobacterium Prochlorococcus. Laboratory experiments show that some cyanophages can only replicate in the light and thus exhibit diurnal infection rhythms under light-dark cycles. Field evidence also suggests synchronized infection of Prochlorococcus by cyanophages in the oceans, which should result in progressive expression of cyanophage early, middle, and late genes. However, distinct temporal expression patterns have not been observed in cyanophage field populations. RESULTS In this study, we reanalyzed a previous metatranscriptomic dataset collected in the North Pacific Subtropical Gyre. In this dataset, it was previously shown that aggregate transcripts from cyanophage scaffolds display diurnal transcriptional rhythms with transcript abundances decreasing at night. By mapping metatranscriptomic reads to individual viral genes, we identified periodically expressed genes from putative viruses infecting the cyanobacteria Prochlorococcus and Synechococcus, heterotrophic bacteria, and algae. Of the 41 cyanophage genes, 35 were from cyanomyoviruses. We grouped the periodically expressed cyanomyovirus genes into early, middle, and late genes based on the conserved temporal expression patterns of their orthologs in cyanomyovirus laboratory cultures. We found that the peak expression times of late genes in cyanophage field populations were significantly later than those of early and middle genes, which were similar to the temporal expression patterns of synchronized cyanophage laboratory cultures. CONCLUSIONS The significantly later peak expression times of late genes in cyanomyovirus field populations suggest that cyanophage infection of Prochlorococcus is synchronized in the North Pacific Subtropical Gyre. The night-time peak expression of late genes also suggests synchronized lysis of Prochlorococcus at night, which might result in synchronized release of dissolved organic matter to the marine food web. Video abstract.
Collapse
Affiliation(s)
- Yue Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- HKUST Shenzhen Research Institute, Shenzhen, China.
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|