1
|
Luo W, Zhang H, Chen Y, Luo W, Lin X. The 30-min diaphragm movement change rate for predicting weaning success in severe pneumonia patients requiring invasive ventilation. Front Med (Lausanne) 2025; 12:1595814. [PMID: 40438383 PMCID: PMC12116489 DOI: 10.3389/fmed.2025.1595814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/25/2025] [Indexed: 06/01/2025] Open
Abstract
Purpose This study evaluated the 30-min diaphragm excursion change rate (ΔDE30-0) as a novel predictor of weaning success compared to existing parameters in patients with severe pneumonia requiring invasive mechanical ventilation. Methods This retrospective cohort study enrolled patients with severe pneumonia requiring invasive mechanical ventilation (n = 100). The patients were divided into successful (n = 79) and failed (n = 21) extubation groups. Ultrasound measurements of diaphragm excursion (DE) were performed at baseline (DE0) and 30 min (DE30) during a spontaneous breathing trial. The ratio ΔDE30-0 was calculated as the absolute difference between DE30 and DE0 divided by DE0. Additional parameters including rapid shallow breathing index (Rapid Shallow Breathing Index, RSBI) and respiratory rate (RR) were also assessed. The predictive performance of ΔDE30-0 and other parameters was evaluated using receiver operating characteristic (ROC) curves. Results The extubation failure group had significantly higher ΔDE30-0 (0.40 ± 0.20 vs. 0.14 ± 0.12, p < 0.0001), RSBI (59.62 ± 21.77 vs. 47.7 ± 13.6, p = 0.0025), and RR (23.62 ± 2.25 vs. 20.34 ± 2.18, p < 0.0001) compared to the success group. ΔDE30-0 demonstrated the highest predictive performance with an area under the ROC curve of 0.924, sensitivity of 86.1%, and specificity of 95.2% at a cut-off value of 0.209. Conclusions ΔDE30-0 is a promising predictor of weaning success in severe pneumonia patients requiring invasive mechanical ventilation. It outperformed existing parameters and demonstrated high predictive accuracy. Implications for clinical practice Incorporating ΔDE30-0 into weaning protocols may improve decision-making, reduce complications, and optimize outcomes for patients requiring invasive mechanical ventilation due to severe pneumonia. This novel parameter can aid clinicians in identifying suitable candidates for extubation, potentially reducing the risk of weaning failure and associated adverse events.
Collapse
Affiliation(s)
- Wentao Luo
- Department of Critical Care Medicine III, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Huagen Zhang
- Department of Critical Care Medicine III, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Yuchong Chen
- Department of Critical Care Medicine I, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Wenfeng Luo
- Department of Respiratory and Critical Care Medicine, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Xiuwen Lin
- Department of Critical Care Medicine III, Meizhou People’s Hospital, Meizhou, Guangdong, China
| |
Collapse
|
2
|
Ratano D, Zhang B, Dianti J, Georgopoulos D, Brochard LJ, Chan TCY, Goligher EC. Lung- and diaphragm-protective strategies in acute respiratory failure: an in silico trial. Intensive Care Med Exp 2024; 12:20. [PMID: 38416269 PMCID: PMC10902250 DOI: 10.1186/s40635-024-00606-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Lung- and diaphragm-protective (LDP) ventilation may prevent diaphragm atrophy and patient self-inflicted lung injury in acute respiratory failure, but feasibility is uncertain. The objectives of this study were to estimate the proportion of patients achieving LDP targets in different modes of ventilation, and to identify predictors of need for extracorporeal carbon dioxide removal (ECCO2R) to achieve LDP targets. METHODS An in silico clinical trial was conducted using a previously published mathematical model of patient-ventilator interaction in a simulated patient population (n = 5000) with clinically relevant physiological characteristics. Ventilation and sedation were titrated according to a pre-defined algorithm in pressure support ventilation (PSV) and proportional assist ventilation (PAV+) modes, with or without adjunctive ECCO2R, and using ECCO2R alone (without ventilation or sedation). Random forest modelling was employed to identify patient-level factors associated with achieving targets. RESULTS After titration, the proportion of patients achieving targets was lower in PAV+ vs. PSV (37% vs. 43%, odds ratio 0.78, 95% CI 0.73-0.85). Adjunctive ECCO2R substantially increased the probability of achieving targets in both PSV and PAV+ (85% vs. 84%). ECCO2R alone without ventilation or sedation achieved LDP targets in 9%. The main determinants of success without ECCO2R were lung compliance, ventilatory ratio, and strong ion difference. In silico trial results corresponded closely with the results obtained in a clinical trial of the LDP titration algorithm (n = 30). CONCLUSIONS In this in silico trial, many patients required ECCO2R in combination with mechanical ventilation and sedation to achieve LDP targets. ECCO2R increased the probability of achieving LDP targets in patients with intermediate degrees of derangement in elastance and ventilatory ratio.
Collapse
Affiliation(s)
- Damian Ratano
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto General Hospital, 585 University Ave, 9-MaRS-9024, Toronto, ON, M5G 2N2, Canada
- Intensive Care and Burn Unit, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Binghao Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Jose Dianti
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto General Hospital, 585 University Ave, 9-MaRS-9024, Toronto, ON, M5G 2N2, Canada
| | - Dimitrios Georgopoulos
- Department of Intensive Care Medicine, University Hospital of Heraklion, University of Crete, Heraklion, Greece
| | - Laurent J Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto General Hospital, 585 University Ave, 9-MaRS-9024, Toronto, ON, M5G 2N2, Canada
| | - Timothy C Y Chan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto General Hospital, 585 University Ave, 9-MaRS-9024, Toronto, ON, M5G 2N2, Canada.
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada.
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.
- Department of Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Warnaar RSP, Mulder MP, Fresiello L, Cornet AD, Heunks LMA, Donker DW, Oppersma E. Computational physiological models for individualised mechanical ventilation: a systematic literature review focussing on quality, availability, and clinical readiness. Crit Care 2023; 27:268. [PMID: 37415253 PMCID: PMC10327331 DOI: 10.1186/s13054-023-04549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Individualised optimisation of mechanical ventilation (MV) remains cumbersome in modern intensive care medicine. Computerised, model-based support systems could help in tailoring MV settings to the complex interactions between MV and the individual patient's pathophysiology. Therefore, we critically appraised the current literature on computational physiological models (CPMs) for individualised MV in the ICU with a focus on quality, availability, and clinical readiness. METHODS A systematic literature search was conducted on 13 February 2023 in MEDLINE ALL, Embase, Scopus and Web of Science to identify original research articles describing CPMs for individualised MV in the ICU. The modelled physiological phenomena, clinical applications, and level of readiness were extracted. The quality of model design reporting and validation was assessed based on American Society of Mechanical Engineers (ASME) standards. RESULTS Out of 6,333 unique publications, 149 publications were included. CPMs emerged since the 1970s with increasing levels of readiness. A total of 131 articles (88%) modelled lung mechanics, mainly for lung-protective ventilation. Gas exchange (n = 38, 26%) and gas homeostasis (n = 36, 24%) models had mainly applications in controlling oxygenation and ventilation. Respiratory muscle function models for diaphragm-protective ventilation emerged recently (n = 3, 2%). Three randomised controlled trials were initiated, applying the Beacon and CURE Soft models for gas exchange and PEEP optimisation. Overall, model design and quality were reported unsatisfactory in 93% and 21% of the articles, respectively. CONCLUSION CPMs are advancing towards clinical application as an explainable tool to optimise individualised MV. To promote clinical application, dedicated standards for quality assessment and model reporting are essential. Trial registration number PROSPERO- CRD42022301715 . Registered 05 February, 2022.
Collapse
Affiliation(s)
- R S P Warnaar
- Cardiovascular and Respiratory Physiology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - M P Mulder
- Cardiovascular and Respiratory Physiology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - L Fresiello
- Cardiovascular and Respiratory Physiology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - A D Cornet
- Department of Intensive Care, Medisch Spectrum Twente, Enschede, The Netherlands
| | - L M A Heunks
- Department of Intensive Care, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - D W Donker
- Cardiovascular and Respiratory Physiology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- Intensive Care Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - E Oppersma
- Cardiovascular and Respiratory Physiology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
4
|
Vedrenne-Cloquet M, Khirani S, Khemani R, Lesage F, Oualha M, Renolleau S, Chiumello D, Demoule A, Fauroux B. Pleural and transpulmonary pressures to tailor protective ventilation in children. Thorax 2023; 78:97-105. [PMID: 35803726 DOI: 10.1136/thorax-2021-218538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/12/2022] [Indexed: 02/07/2023]
Abstract
This review aims to: (1) describe the rationale of pleural (PPL) and transpulmonary (PL) pressure measurements in children during mechanical ventilation (MV); (2) discuss its usefulness and limitations as a guide for protective MV; (3) propose future directions for paediatric research. We conducted a scoping review on PL in critically ill children using PubMed and Embase search engines. We included peer-reviewed studies using oesophageal (PES) and PL measurements in the paediatric intensive care unit (PICU) published until September 2021, and excluded studies in neonates and patients treated with non-invasive ventilation. PL corresponds to the difference between airway pressure and PPL Oesophageal manometry allows measurement of PES, a good surrogate of PPL, to estimate PL directly at the bedside. Lung stress is the PL, while strain corresponds to the lung deformation induced by the changing volume during insufflation. Lung stress and strain are the main determinants of MV-related injuries with PL and PPL being key components. PL-targeted therapies allow tailoring of MV: (1) Positive end-expiratory pressure (PEEP) titration based on end-expiratory PL (direct measurement) may be used to avoid lung collapse in the lung surrounding the oesophagus. The clinical benefit of such strategy has not been demonstrated yet. This approach should consider the degree of recruitable lung, and may be limited to patients in which PEEP is set to achieve an end-expiratory PL value close to zero; (2) Protective ventilation based on end-inspiratory PL (derived from the ratio of lung and respiratory system elastances), might be used to limit overdistention and volutrauma by targeting lung stress values < 20-25 cmH2O; (3) PPL may be set to target a physiological respiratory effort in order to avoid both self-induced lung injury and ventilator-induced diaphragm dysfunction; (4) PPL or PL measurements may contribute to a better understanding of cardiopulmonary interactions. The growing cardiorespiratory system makes children theoretically more susceptible to atelectrauma, myotrauma and right ventricle failure. In children with acute respiratory distress, PPL and PL measurements may help to characterise how changes in PEEP affect PPL and potentially haemodynamics. In the PICU, PPL measurement to estimate respiratory effort is useful during weaning and ventilator liberation. Finally, the use of PPL tracings may improve the detection of patient ventilator asynchronies, which are frequent in children. Despite these numerous theoritcal benefits in children, PES measurement is rarely performed in routine paediatric practice. While the lack of robust clincal data partially explains this observation, important limitations of the existing methods to estimate PPL in children, such as their invasiveness and technical limitations, associated with the lack of reference values for lung and chest wall elastances may also play a role. PPL and PL monitoring have numerous potential clinical applications in the PICU to tailor protective MV, but its usefulness is counterbalanced by technical limitations. Paediatric evidence seems currently too weak to consider oesophageal manometry as a routine respiratory monitoring. The development and validation of a noninvasive estimation of PL and multimodal respiratory monitoring may be worth to be evaluated in the future.
Collapse
Affiliation(s)
- Meryl Vedrenne-Cloquet
- Pediatric intensive care unit, Necker-Enfants Malades Hospitals, Paris, France .,Université de Paris Cité, VIFASOM, Paris, France.,Pediatric Non Invasive Ventilation Unit, Necker-Enfants Malades Hospitals, Paris, France
| | - Sonia Khirani
- Pediatric Non Invasive Ventilation Unit, Necker-Enfants Malades Hospitals, Paris, France.,ASV Santé, Genevilliers, France
| | - Robinder Khemani
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Fabrice Lesage
- Pediatric intensive care unit, Necker-Enfants Malades Hospitals, Paris, France
| | - Mehdi Oualha
- Pediatric intensive care unit, Necker-Enfants Malades Hospitals, Paris, France
| | - Sylvain Renolleau
- Pediatric intensive care unit, Necker-Enfants Malades Hospitals, Paris, France
| | - Davide Chiumello
- Dipartimento di Anestesia, Rianimazione e Terapia del Dolore, Fondazione, IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Alexandre Demoule
- Service de Médecine Intensive et Réanimation (Département R3S), AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Paris, France.,UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, Sorbonne Université, INSERM, Paris, France
| | - Brigitte Fauroux
- Université de Paris Cité, VIFASOM, Paris, France.,Pediatric Non Invasive Ventilation Unit, Necker-Enfants Malades Hospitals, Paris, France
| |
Collapse
|
5
|
Ang CYS, Lee JWW, Chiew YS, Wang X, Tan CP, Cove ME, Nor MBM, Zhou C, Desaive T, Chase JG. Virtual patient framework for the testing of mechanical ventilation airway pressure and flow settings protocol. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107146. [PMID: 36191352 DOI: 10.1016/j.cmpb.2022.107146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Model-based and personalised decision support systems are emerging to guide mechanical ventilation (MV) treatment for respiratory failure patients. However, model-based treatments require resource-intensive clinical trials prior to implementation. This research presents a framework for generating virtual patients for testing model-based decision support, and direct use in MV treatment. METHODS The virtual MV patient framework consists of 3 stages: 1) Virtual patient generation, 2) Patient-level validation, and 3) Virtual clinical trials. The virtual patients are generated from retrospective MV patient data using a clinically validated respiratory mechanics model whose respiratory parameters (respiratory elastance and resistance) capture patient-specific pulmonary conditions and responses to MV care over time. Patient-level validation compares the predicted responses from the virtual patient to their retrospective results for clinically implemented MV settings and changes to care. Patient-level validated virtual patients create a platform to conduct virtual trials, where the safety of closed-loop model-based protocols can be evaluated. RESULTS This research creates and presents a virtual patient platform of 100 virtual patients generated from retrospective data. Patient-level validation reported median errors of 3.26% for volume-control and 6.80% for pressure-control ventilation mode. A virtual trial on a model-based protocol demonstrates the potential efficacy of using virtual patients for prospective evaluation and testing of the protocol. CONCLUSION The virtual patient framework shows the potential to safely and rapidly design, develop, and optimise new model-based MV decision support systems and protocols using clinically validated models and computer simulation, which could ultimately improve patient care and outcomes in MV.
Collapse
Affiliation(s)
| | - Jay Wing Wai Lee
- School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | | | - Xin Wang
- School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | - Chee Pin Tan
- School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | - Matthew E Cove
- Division of Respiratory & Critical Care Medicine, Department of Medicine, National University Health System, Singapore
| | - Mohd Basri Mat Nor
- Kulliyah of Medicine, International Islamic University Malaysia, Kuantan, 25200, Malaysia
| | - Cong Zhou
- Center of Bioengineering, University of Canterbury, Christchurch, New Zealand
| | - Thomas Desaive
- GIGA In-Silico Medicine, University of Liege, Liege, Belgium
| | - J Geoffrey Chase
- Center of Bioengineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
6
|
Tsolaki V, Zakynthinos GE. Simulation to minimise patient self-inflicted lung injury: are we almost there? Br J Anaesth 2022; 129:150-153. [PMID: 35729011 PMCID: PMC9551385 DOI: 10.1016/j.bja.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Computational modelling has been used to enlighten pathophysiological issues in patients with acute respiratory distress syndrome (ARDS) using a sophisticated, integrated cardiopulmonary model. COVID-19 ARDS is a pathophysiologically distinct entity characterised by dissociation between impairment in gas exchange and respiratory system mechanics, especially in the early stages of ARDS. Weaver and colleagues used computational modelling to elucidate factors contributing to generation of patient self-inflicted lung injury, and evaluated the effects of various spontaneous respiratory efforts with different oxygenation and ventilatory support modes. Their findings indicate that mechanical forces generated in the lung parenchyma are only counterbalanced when the respiratory support mode reduces the intensity of respiratory efforts.
Collapse
Affiliation(s)
- Vasiliki Tsolaki
- Department of Intensive Care Medicine, General University of Larissa, University of Thessaly, Faculty of Medicine, Larissa, Thessaly, Greece.
| | - George E Zakynthinos
- Department of Intensive Care Medicine, General University of Larissa, University of Thessaly, Faculty of Medicine, Larissa, Thessaly, Greece
| |
Collapse
|
7
|
The physiological underpinnings of life-saving respiratory support. Intensive Care Med 2022; 48:1274-1286. [PMID: 35690953 PMCID: PMC9188674 DOI: 10.1007/s00134-022-06749-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Treatment of respiratory failure has improved dramatically since the polio epidemic in the 1950s with the use of invasive techniques for respiratory support: mechanical ventilation and extracorporeal respiratory support. However, respiratory support is only a supportive therapy, designed to "buy time" while the disease causing respiratory failure abates. It ensures viable gas exchange and prevents cardiorespiratory collapse in the context of excessive loads. Because the use of invasive modalities of respiratory support is also associated with substantial harm, it remains the responsibility of the clinician to minimize such hazards. Direct iatrogenic consequences of mechanical ventilation include the risk to the lung (ventilator-induced lung injury) and the diaphragm (ventilator-induced diaphragm dysfunction and other forms of myotrauma). Adverse consequences on hemodynamics can also be significant. Indirect consequences (e.g., immobilization, sleep disruption) can have devastating long-term effects. Increasing awareness and understanding of these mechanisms of injury has led to a change in the philosophy of care with a shift from aiming to normalize gases toward minimizing harm. Lung (and more recently also diaphragm) protective ventilation strategies include the use of extracorporeal respiratory support when the risk of ventilation becomes excessive. This review provides an overview of the historical background of respiratory support, pathophysiology of respiratory failure and rationale for respiratory support, iatrogenic consequences from mechanical ventilation, specifics of the implementation of mechanical ventilation, and role of extracorporeal respiratory support. It highlights the need for appropriate monitoring to estimate risks and to individualize ventilation and sedation to provide safe respiratory support to each patient.
Collapse
|
8
|
Goligher EC, Dres M, Patel BK, Sahetya SK, Beitler JR, Telias I, Yoshida T, Vaporidi K, Grieco DL, Schepens T, Grasselli G, Spadaro S, Dianti J, Amato M, Bellani G, Demoule A, Fan E, Ferguson ND, Georgopoulos D, Guérin C, Khemani RG, Laghi F, Mercat A, Mojoli F, Ottenheijm CAC, Jaber S, Heunks L, Mancebo J, Mauri T, Pesenti A, Brochard L. Lung- and Diaphragm-Protective Ventilation. Am J Respir Crit Care Med 2020; 202:950-961. [PMID: 32516052 DOI: 10.1164/rccm.202003-0655cp] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mechanical ventilation can cause acute diaphragm atrophy and injury, and this is associated with poor clinical outcomes. Although the importance and impact of lung-protective ventilation is widely appreciated and well established, the concept of diaphragm-protective ventilation has recently emerged as a potential complementary therapeutic strategy. This Perspective, developed from discussions at a meeting of international experts convened by PLUG (the Pleural Pressure Working Group) of the European Society of Intensive Care Medicine, outlines a conceptual framework for an integrated lung- and diaphragm-protective approach to mechanical ventilation on the basis of growing evidence about mechanisms of injury. We propose targets for diaphragm protection based on respiratory effort and patient-ventilator synchrony. The potential for conflict between diaphragm protection and lung protection under certain conditions is discussed; we emphasize that when conflicts arise, lung protection must be prioritized over diaphragm protection. Monitoring respiratory effort is essential to concomitantly protect both the diaphragm and the lung during mechanical ventilation. To implement lung- and diaphragm-protective ventilation, new approaches to monitoring, to setting the ventilator, and to titrating sedation will be required. Adjunctive interventions, including extracorporeal life support techniques, phrenic nerve stimulation, and clinical decision-support systems, may also play an important role in selected patients in the future. Evaluating the clinical impact of this new paradigm will be challenging, owing to the complexity of the intervention. The concept of lung- and diaphragm-protective ventilation presents a new opportunity to potentially improve clinical outcomes for critically ill patients.
Collapse
Affiliation(s)
- Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine.,Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Martin Dres
- Service de Pneumologie, Médecine Intensive et Réanimation (Département R3S), Assistance Publique-Hopitaux de Paris, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Paris, France.,Unite Mixte de Recherche-Sorbonne 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Institut National de la Sante et de la Recherche Medicale, Sorbonne Université, Paris, France
| | - Bhakti K Patel
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Sarina K Sahetya
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Jeremy R Beitler
- Division of Pulmonary, Allergy, and Critical Care Medicine, Center for Acute Respiratory Failure, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Irene Telias
- Interdepartmental Division of Critical Care Medicine.,Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada.,Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Takeshi Yoshida
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Katerina Vaporidi
- Department of Intensive Care Medicine, University Hospital of Heraklion, Medical School, University of Crete, Heraklion, Greece
| | - Domenico Luca Grieco
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy.,Dipartimento di Medicina d'Urgenza e di Terapia Intensiva e Anestesia, Fondazione Policlinico Universitario, A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Tom Schepens
- Department of Critical Care Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Giacomo Grasselli
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Savino Spadaro
- Department Morphology, Surgery and Experimental Medicine, ICU, St. Anne's Archbishop Hospital, University of Ferrara, Ferrara, Italy
| | - Jose Dianti
- Interdepartmental Division of Critical Care Medicine.,Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada.,Intensive Care Unit, Department of Medicine, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Marcelo Amato
- Laboratório de Pneumologia, Laboratório de Investicação Médica 9, Disciplina de Pneumologia, Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Giacomo Bellani
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Alexandre Demoule
- Service de Pneumologie, Médecine Intensive et Réanimation (Département R3S), Assistance Publique-Hopitaux de Paris, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Paris, France.,Unite Mixte de Recherche-Sorbonne 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Institut National de la Sante et de la Recherche Medicale, Sorbonne Université, Paris, France
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine.,Institute for Health Policy, Management, and Evaluation, and.,Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine.,Institute for Health Policy, Management, and Evaluation, and.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Dimitrios Georgopoulos
- Department of Intensive Care Medicine, University Hospital of Heraklion, Medical School, University of Crete, Heraklion, Greece
| | - Claude Guérin
- Médecine Intensive-Réanimation, Hopital Edouard Herriot Lyon, Faculté de Médecine Lyon-Est, Université de Lyon, Institut National de la Santé et de la Recherche Médicale 955 Créteil, Lyon, France
| | - Robinder G Khemani
- Department of Anesthesiology and Critical Care, Children's Hospital Los Angeles, Los Angeles, California.,Department of Pediatrics, University of Southern California, Los Angeles, California
| | - Franco Laghi
- Division of Pulmonary and Critical Care Medicine, Stritch School of Medicine, Loyola University, Maywood, Illinois.,Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital, Hines, Illinois
| | - Alain Mercat
- Département de Médecine Intensive-Réanimation et Médecine Hyperbare, Centre Hospitalier d'Angers, Angers, France
| | - Francesco Mojoli
- Department of Anesthesia and Intensive Care, Scientific Hospitalization and Care Institute, San Matteo Polyclinic Foundation, University of Pavia, Pavia, Italy
| | | | - Samir Jaber
- Anesthesiology and Intensive Care, Anesthesia and Critical Care Department B, Saint Eloi Teaching Hospital, PhyMedExp, Montpellier University Hospital Center, University of Montpellier, Joint Research Unit 9214, National Institute of Health and Medical Research U1046, National Scientific Research Center, Montpellier, France; and
| | - Leo Heunks
- Department of Intensive Care, Vrije University Location, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jordi Mancebo
- Servei de Medicina Intensiva Hospital de Sant Pau, Barcelona, Spain
| | - Tommaso Mauri
- Dipartimento di Medicina d'Urgenza e di Terapia Intensiva e Anestesia, Fondazione Policlinico Universitario, A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Department of Critical Care Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Antonio Pesenti
- Dipartimento di Medicina d'Urgenza e di Terapia Intensiva e Anestesia, Fondazione Policlinico Universitario, A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Department of Critical Care Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine.,Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|