1
|
Lincoln JM, Barlowe ML, Rucker HR, Parker MR. Reconsidering reproductive patterns in a model dissociated species, the red-sided garter snake: Sex-specific and seasonal changes in gonadal steroidogenic gene expression. Front Endocrinol (Lausanne) 2023; 14:1135535. [PMID: 36992803 PMCID: PMC10040831 DOI: 10.3389/fendo.2023.1135535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 03/16/2023] Open
Abstract
Sex steroid hormones are powerful regulators of reproductive behavior and physiology in vertebrates, and steroidogenesis has distinct sex- and season-specific patterns ultimately dictated by the expression of key enzymes. Most comparative endocrinology studies, however, focus only on circulating levels of sex steroids to determine their temporal association with life-history events in what are termed associated reproductive patterns. The red-sided garter snake (Thamnophis sirtalis parietalis) is a notable exception; this species exhibits maximal sex behavior decoupled from maximal sex steroid production and gametogenesis in what is termed a dissociated reproductive pattern. And while this is true for male red-sided garter snakes and their production of testosterone, females have maximal estradiol production during peak breeding (spring) but only immediately after mating. Here, we demonstrate that expression of ovarian aromatase (conversion of androgens to estrogens) matches the established seasonal hormone pattern in females. Additionally, steroidogenic gene expression in the ovary is broadly reduced if not suppressed compared to the testis throughout the active year. Bizarrely, male red-sided garter snakes demonstrate an unexplained pattern of steroidogenic gene expression in the testis. StAR (import of cholesterol to steroidogenesis) is maximally expressed in spring, yet Hsd17b3 expression (conversion of androstenedione to testosterone) is highest in summer, with the latter matching the established summer peak in male testosterone. The function of elevated StAR in spring is unknown, but our results suggest a decoupling between maximal StAR expression and testosterone biosynthesis (Hsd17b3 expression). We also purport that the reproductive pattern binary should be reassessed given its lack of fit for many vertebrate species that demonstrate seasonal, mixed patterns of (a)synchrony between circulating sex hormones and reproductive behavior.
Collapse
Affiliation(s)
- Julianna M. Lincoln
- Department of Biology, Harrisonburg, James Madison University, VA, United States
| | - Megan L. Barlowe
- Department of Biology, Harrisonburg, James Madison University, VA, United States
| | - Holly R. Rucker
- Department of Biology, Harrisonburg, James Madison University, VA, United States
- Department of Cellular and Molecular Biology, University of Wisconsin, Madison, WI, United States
| | - M. Rockwell Parker
- Department of Biology, Harrisonburg, James Madison University, VA, United States
- *Correspondence: M. Rockwell Parker,
| |
Collapse
|
2
|
Rucker HR, Parker MR. Decreased attractivity in female garter snakes treated with an aromatase inhibitor. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:171-180. [PMID: 34533896 DOI: 10.1002/jez.2546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Most experimental studies on sexual signal regulation via hormone manipulation have focused on male signals, yet female signals demonstrate substantial phenotypic variation and hormone-dependent expression. Female red-sided garter snakes (Thamnophis sirtalis parietalis) produce a skin-based sex pheromone used by males in mate selection. The principle female sex steroid, 17 β-estradiol, controls pheromone production in snakes, but studies manipulating female garter snakes have produced conflicting results, relied on behavioral tests with males in the laboratory, and did not quantify pheromone expression. Because aromatase is the terminal enzyme in estradiol biosynthesis, we hypothesized that female garter snakes rely on aromatase to ultimately control pheromone production during the annual cycle of this species. To test this, we used a known pharmacological inhibitor of aromatase, fadrozole (FAD). Wild-caught female garter snakes were chronically treated via subcutaneous injections of either FAD (1.0 mg kg-1 ) or saline (control) for six months in the laboratory during the active period of the annual cycle then hibernated. In two separate field bioassays the next spring at the den site, FAD females received approximately 50% less courtship from wild, sexually active male garter snakes compared to SHAM females. Pheromone analysis revealed that four of the largest, unsaturated methyl ketones were specifically downregulated in FAD females, indicating that aromatase action is a crucial, permissive step in the maintenance of female attractivity.
Collapse
Affiliation(s)
- Holly R Rucker
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - M Rockwell Parker
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| |
Collapse
|
3
|
Analyses of Skin Secretions of Vipera ammodytes (Linnaeus, 1758) (Reptilia: Serpentes), with Focus on the Complex Compounds and Their Possible Role in the Chemical Communication. Molecules 2020; 25:molecules25163622. [PMID: 32784906 PMCID: PMC7465031 DOI: 10.3390/molecules25163622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022] Open
Abstract
Snakes rely heavily on chemical cues when foraging, searching for mates, etc. Snakes' sex attractiveness pheromones comprise mainly heavy, semi-volatile compounds such as ketones. Here we investigated the composition of skin secretions of adult Vipera ammodytes (Linnaeus, 1758) individuals. The samples were analyzed by gas chromatography/mass spectrometry and the identification of the compounds was performed using commercial mass spectral libraries and retention times. The relative concentrations of all detected compounds were tested for significant differences between (1) male vs. female live individuals, (2) shed skin vs. live individuals, and (3) pre-reproductive vs. reproductive live individuals. We detected fifty-nine compounds of which six were ketones. Two ketones (2-pentacosanone and 2-heptacosanone) were present in many of the samples and thus may have an important role in the V. ammodytes chemical communication. We did not find significant differences between the relative concentrations of the compounds between male and female individuals (only three compounds are exceptions). Significant differences were found between extracts from shed skins and live individuals and between live pre-reproductive individuals and live reproductive individuals. The results of the study suggest that chemical communication in V. ammodytes involves less compounds in comparison to the known literature data for other species.
Collapse
|
4
|
Ashton SE, Vernasco BJ, Moore IT, Parker MR. Sex and seasonal differences in mRNA expression of estrogen receptor α (ESR1) in red-sided garter snakes (Thamnophis sirtalis parietalis). Gen Comp Endocrinol 2018; 267:59-65. [PMID: 29807033 DOI: 10.1016/j.ygcen.2018.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/30/2018] [Accepted: 05/24/2018] [Indexed: 11/30/2022]
Abstract
Estrogens are important regulators of reproductive physiology including sexual signal expression and vitellogenesis. For the regulation to occur, the hormone must bind and activate receptors in target tissues, and expression of the receptors can vary by sex and/or season. By simultaneously comparing circulating hormone levels with receptor expression, a more complete understanding of hormone action can be gained. Our study species, the red-sided garter snake (Thamnophis sirtalis parietalis), provides an excellent opportunity to study the interaction between sex steroid hormones and receptor expression in addition to sexual dimorphism and seasonality. During the spring mating season, male garter snakes rely exclusively on the female's skin-based, estrogen-dependent sex pheromone to direct courtship. Males can be stimulated to produce this sexual attractiveness pheromone by treatment with estradiol (E2), which also induces male vitellogenesis. Estrogen receptors (ESRs) are required to transduce the effects of estrogens, thus we used quantitative RT-PCR to analyze expression of ESR alpha (ERα; gene ESR1) mRNA in the skin and liver of wild caught male and female garter snakes across simulated spring and fall conditions in the laboratory. While ESR1 was present in the skin of both sexes, there were no sex or seasonal differences in expression levels. Liver expression of ESR1, however, was sexually dimorphic, with females showing greatest expression in fall when circulating E2 concentrations were lowest. There were no statistically significant correlations between E2 and ESR1 expression. Our data suggest that the skin of both sexes is sensitive to estrogen signaling and thus the production of sex pheromone is dependent on bioavailable levels of E2. Female expression of ESR1 in the liver may increase in the fall to prime energy storage mechanisms required for vitellogenesis the following year.
Collapse
Affiliation(s)
- Sydney E Ashton
- Department of Biology, James Madison University, Harrisonburg, VA 22807, United States; Graduate Program in Neuroscience, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Ben J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - M Rockwell Parker
- Department of Biology, James Madison University, Harrisonburg, VA 22807, United States.
| |
Collapse
|
5
|
Goldberg JK, Wallace AK, Weiss SL. Skin lipids of the striped plateau lizard (Sceloporus virgatus) correlate with female receptivity and reproductive quality alongside visual ornaments. Naturwissenschaften 2017; 104:81. [PMID: 28913635 DOI: 10.1007/s00114-017-1503-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
Sex pheromones can perform a variety of functions ranging from revealing the location of suitable mates to being honest signals of mate quality, and they are used in the mate selection process by many species of reptile. In this study, we determined whether the skin lipids of female striped plateau lizards (Sceloporus virgatus) can predict the reproductive quality of females, thereby having the potential to serve as pheromones. Using gas chromatography/mass spectrometry, we identified 17 compounds present in skin lipids of female lizards. Using principal component analysis to compare the skin lipid profile of receptive and non-receptive females, we determined that an uncharacterized compound may allow for chemical identification of receptive mates. We also compared extracted principal components to measures of female fitness and reproductive qualities and found that the level of two 18 carbon fatty acids present in a female's skin lipids may indicate her clutch size. Finally, we compared the information content of the skin lipids to that of female-specific color ornaments to assess whether chemical and visual cues transmit different information or not. We found that the chroma of a female's orange throat patch is also related to her clutch size, suggesting that chemical signals may reinforce the information communicated by visual ornamentation in this species which would support the "backup signals" hypothesis for multiple signals.
Collapse
Affiliation(s)
- Jay K Goldberg
- Department of Biology, University of Puget Sound, 1500 N. Warner Street, Tacoma, WA, 98416, USA.,Department of Biology, Indiana University, 107 S. Indiana Avenue, Bloomington, IN, 47405, USA
| | - Alisa K Wallace
- Department of Biology, University of Puget Sound, 1500 N. Warner Street, Tacoma, WA, 98416, USA
| | - Stacey L Weiss
- Department of Biology, University of Puget Sound, 1500 N. Warner Street, Tacoma, WA, 98416, USA.
| |
Collapse
|
6
|
Leu ST, Jackson G, Roddick JF, Bull CM. Lizard movement tracks: variation in path re-use behaviour is consistent with a scent-marking function. PeerJ 2016; 4:e1844. [PMID: 27019790 PMCID: PMC4806635 DOI: 10.7717/peerj.1844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/03/2016] [Indexed: 11/20/2022] Open
Abstract
Individual movement influences the spatial and social structuring of a population. Animals regularly use the same paths to move efficiently to familiar places, or to patrol and mark home ranges. We found that Australian sleepy lizards (Tiliqua rugosa), a monogamous species with stable pair-bonds, repeatedly used the same paths within their home ranges and investigated whether path re-use functions as a scent-marking behaviour, or whether it is influenced by site familiarity. Lizards can leave scent trails on the substrate when moving through the environment and have a well-developed vomeronasal system to detect and respond to those scents. Path re-use would allow sleepy lizards to concentrate scent marks along these well-used trails, advertising their presence. Hypotheses of mate attraction and mating competition predict that sleepy lizard males, which experience greater intra-sexual competition, mark more strongly. Consistent with those hypotheses, males re-used their paths more than females, and lizards that showed pairing behaviour with individuals of the opposite sex re-used paths more than unpaired lizards, particularly among females. Hinterland marking is most economic when home ranges are large and mobility is low, as is the case in the sleepy lizard. Consistent with this strategy, re-used paths were predominantly located in the inner 50% home range areas. Together, our detailed movement analyses suggest that path re-use is a scent marking behaviour in the sleepy lizard. We also investigated but found less support for alternative explanations of path re-use behaviour, such as site familiarity and spatial knowledge. Lizards established the same number of paths, and used them as often, whether they had occupied their home ranges for one or for more years. We discuss our findings in relation to maintenance of the monogamous mating system of this species, and the spatial and social structuring of the population.
Collapse
Affiliation(s)
- Stephan T Leu
- School of Biological Sciences, Flinders University , Adelaide, South Australia , Australia
| | - Grant Jackson
- School of Computer Science, Engineering and Mathematics, Flinders University , Adelaide, South Australia , Australia
| | - John F Roddick
- School of Computer Science, Engineering and Mathematics, Flinders University , Adelaide, South Australia , Australia
| | - C Michael Bull
- School of Biological Sciences, Flinders University , Adelaide, South Australia , Australia
| |
Collapse
|
7
|
Dayger CA, Lutterschmidt DI. Seasonal and sex differences in responsiveness to adrenocorticotropic hormone contribute to stress response plasticity in red-sided garter snakes (Thamnophis sirtalis parietalis). J Exp Biol 2016; 219:1022-30. [DOI: 10.1242/jeb.130450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/20/2016] [Indexed: 11/20/2022]
Abstract
Like many vertebrates, hormonal responses to stress vary seasonally in red-sided garter snakes (Thamnophis sirtalis parietalis). For example, males generally exhibit reduced glucocorticoid responses to a standard stressor during the spring mating season. We asked whether variation in adrenal sensitivity to adrenocorticotropic hormone (ACTH) explains why glucocorticoid responses to capture stress vary with sex, season, and body condition in red-sided garter snakes. We measured glucocorticoids at 0, 1, and 4 hours after injection with ACTH (0.1 IU/g body mass) or vehicle in males and females during the spring mating season and fall pre-hibernation period. Because elevated glucocorticoids can influence sex steroids, we also examined androgen and estradiol responses to ACTH. ACTH treatment increased glucocorticoids in both sexes and seasons. Spring-collected males had a smaller integrated glucocorticoid response to ACTH than fall-collected males. The integrated glucocorticoid response to ACTH differed with sex during the spring, with males having a smaller glucocorticoid response than females. Although integrated glucocorticoid responses to ACTH did not vary with body condition, we observed an interaction among season, sex and body condition. In males, ACTH treatment did not alter androgens in either season, but androgens decreased during the sampling period. Similar to previous studies, plasma estradiol was low or undetectable during the spring and fall and therefore any effect of ACTH treatment on estradiol could not be determined. These data provide support for a mechanism that partly explains how the HPA axis integrates information about season, sex, and body condition: namely, variation in adrenal responsiveness to ACTH.
Collapse
Affiliation(s)
- Catherine A. Dayger
- Portland State University, Department of Biology, 1719 SW 10th Ave, Portland, OR 97201, USA
| | | |
Collapse
|
8
|
Martín J, López P. Condition-dependent chemosignals in reproductive behavior of lizards. Horm Behav 2015; 68:14-24. [PMID: 24952102 DOI: 10.1016/j.yhbeh.2014.06.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/07/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". Many lizards have diverse glands that produce chemosignals used in intraspecific communication and that can have reproductive consequences. For example, information in chemosignals of male lizards can be used in intrasexual competition to identify and assess the fighting potential or dominance status of rival males either indirectly through territorial scent-marks or during agonistic encounters. Moreover, females of several lizard species "prefer" to establish or spend more time on areas scent-marked by males with compounds signaling a better health or body condition or a higher genetic compatibility, which can have consequences for their mating success and inter-sexual selection processes. We review here recent studies that suggest that the information content of chemosignals of lizards may be reliable because several physiological and endocrine processes would regulate the proportions of chemical compounds available for gland secretions. Because chemosignals are produced by the organism or come from the diet, they should reflect physiological changes, such as different hormonal levels (e.g. testosterone or corticosterone) or different health states (e.g. parasitic infections, immune response), and reflect the quality of the diet of an individual. More importantly, some compounds that may function as chemosignals also have other important functions in the organism (e.g. as antioxidants or regulating the immune system), so there could be trade-offs between allocating these compounds to attending physiological needs or to produce costly sexual "chemical ornaments". All these factors may contribute to maintain chemosignals as condition-dependent sexual signals, which can inform conspecifics on the characteristics and state of the sender and allow making behavioral decisions with reproductive consequences. To understand the evolution of chemical secretions of lizards as sexual signals and their relevance in reproduction, future studies should examine what information the signals are carrying, the physiological processes that can maintain the reliability of the message and how diverse behavioral responses to chemosignals may influence reproductive success.
Collapse
Affiliation(s)
- José Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain.
| | - Pilar López
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
9
|
Parker MR, Mason RT. A novel mechanism regulating a sexual signal: the testosterone-based inhibition of female sex pheromone expression in garter snakes. Horm Behav 2014; 66:509-16. [PMID: 25058443 DOI: 10.1016/j.yhbeh.2014.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 11/18/2022]
Abstract
Vertebrates communicate their sex to conspecifics through the use of sexually dimorphic signals, such as ornaments, behaviors and scents. Furthermore, the physiological connection between hormones and secondary sexual signal expression is key to understanding their dimorphism, seasonality and evolution. The red-sided garter snake (Thamnophis sirtalis parietalis) is the only reptile for which a described pheromone currently exists, and because garter snakes rely completely on the sexual attractiveness pheromone for species identification and mate choice, they constitute a unique model species for exploring the relationship between pheromones and the endocrine system. We recently demonstrated that estrogen can activate female pheromone production in male garter snakes. The purpose of this study was to determine the mechanism(s) acting to prevent female pheromone production in males. We found that castrated males (GX) are courted by wild males in the field and produce appreciable amounts of female sex pheromone. Furthermore, pheromone production is inhibited in castrates given testosterone implants (GX+T), suggesting that pheromone production is actively inhibited by the presence of testosterone. Lastly, testosterone supplementation alone (T) increased the production of several saturated methyl ketones in the pheromone but not the unsaturated ketones; this may indicate that saturated ketones are testosterone-activated components of the garter snake's skin lipid milieu. Collectively, our research has shown that pheromone expression in snakes results from two processes: activation by the feminizing steroid estradiol and inhibition by testosterone. We suggest that basal birds and garter snakes share common pathways of activation that modulate crucial intraspecific signals that originate from skin.
Collapse
Affiliation(s)
- M Rockwell Parker
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA; Department of Biology, Washington and Lee University, Lexington, VA 24450, USA.
| | - Robert T Mason
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
10
|
Uhrig EJ, LeMaster MP, Mason RT. Species specificity of methyl ketone profiles in the skin lipids of female garter snakes, genus Thamnophis. BIOCHEM SYST ECOL 2014. [DOI: 10.1016/j.bse.2013.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|