1
|
Eckberg JN, Hubbard A, Schwarz ET, Smith ET, Sanders NJ. The dominant plant species
Solidago canadensis
structures multiple trophic levels in an old‐field ecosystem. Ecosphere 2023. [DOI: 10.1002/ecs2.4393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Julia N. Eckberg
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA
| | - Akane Hubbard
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA
| | - Eva T. Schwarz
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA
| | - Elliott T. Smith
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA
| | - Nathan J. Sanders
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
2
|
Yang LL, Wang B, Shen J, Wang GR. Comparative morphology and plant volatile responses of antennal sensilla in Cinara cedri (Hemiptera: Lachninae), Eriosoma lanigerum (Hemiptera: Eriosomatinae), and Therioaphis trifolii (Hemiptera: Calaphidinae). Front Cell Neurosci 2023; 17:1162349. [PMID: 37180945 PMCID: PMC10172507 DOI: 10.3389/fncel.2023.1162349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Olfaction is important for mediating aphid behaviors and is involved in host location and mating. Antennal primary rhinaria play a key role in the chemoreception of aphids. The function of the peripheral olfactory system in the subfamily Aphidinae has been intensively studied, but little is known about other subfamilies of Aphididae. Therefore, three aphid species were selected to study the olfactory reception of plant volatiles: Cinara cedri (Lachninae), Eriosoma lanigerum (Eriosomatinae), and Therioaphis trifolii (Calaphidinae). In this study, the morphology and distribution of the antennal sensilla of apterous adults were observed by scanning electron microscopy. Three morphological types were identified (placoid sensilla, coeloconic sensilla, and trichoid sensilla); the first two were distributed on the antennal primary rhinaria. A pattern of primary rhinaria in C. cedri was found that differed from that of E. lanigerum and T. trifolii and consists of 1 large placoid sensillum (LP) on the 4th segment, 2 LPs on the 5th segment, and a group of sensilla on the 6th antennal segments. Later, we recorded and compared neuronal responses of the distinct placoid sensilla in the primary rhinaria of the three aphid species to 18 plant volatiles using a single sensillum recording (SSR) technique. The results indicated that the functional profiles based on the tested odorants of the primary rhinaria of the three investigated aphid species were clustered into three classes, and exhibited excitatory responses to certain types of odorants, especially terpenes. In C. cedri, the ORNs in LP6 exhibited the highest responses to (±)-citronellal across all tested chemicals, and showed greater sensitivity to (±)-citronellal than to (+)-limonene. ORNs in LP5 were partially responsive to α-pinene and (-)-β-pinene in a dose-dependent manner. Across different species, E. lanigerum showed significantly stronger neuronal responses of LP5 to several terpenes, such as (-)-linalool and α-terpineol, compared to other species. In T. trifolii, the neuronal activities in LP6 showed a greater response to methyl salicylate as compared to LP5. Overall, our results preliminarily illustrate the functional divergence of ORNs in the primary rhinaria of aphids from three subfamilies of Aphididae and provide a basis for better understanding the mechanism of olfactory recognition in aphids.
Collapse
Affiliation(s)
- Lu-Lu Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology and Ministry of Agriculture (MOA) Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Bing Wang
| | - Jie Shen
- Department of Entomology and Ministry of Agriculture (MOA) Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Gui-Rong Wang
| |
Collapse
|
3
|
Sesquiterpene Induction by the Balsam Woolly Adelgid (Adelges piceae) in Putatively Resistant Fraser Fir (Abies fraseri). FORESTS 2022. [DOI: 10.3390/f13050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fraser fir, Abies fraseri (Pursh) Poir., is a tree endemic to the Southern Appalachians and is found only in a few isolated populations at high elevations. Fraser firs are also cultivated on a commercial scale as Christmas trees. The species is imperiled by an introduced insect, the balsam woolly adelgid, Adelges piceae Ratzeburg (BWA). The insect severely damages Christmas tree crops and has caused substantial Fraser fir mortality in natural stands. Foliar terpenoids are one mechanism of host plant defense against invading insects and may be one focus of future Christmas tree breeding efforts. This study examines the correlation of foliar terpenoids with Fraser fir performance when infested with BWA. GC-MS and GC-FID analysis of artificially infested Fraser fir foliage reveals that increased concentrations of four terpenoid compounds are associated with BWA infestations. Foliar concentrations of two sesquiterpenes, camphene and humulene, are significantly higher in putatively resistant Fraser fir clones than in more susceptible clones after sustained adelgid feeding for a period of 20 weeks. Although it is unclear if the induction of these sesquiterpenes in the host fir is directly contributing to adelgid resistance, these compounds could serve as effective indicators while screening for BWA resistance in future Christmas tree breeding programs.
Collapse
|
4
|
Ecological costs of goldenrod’s ducking strategy in the currency of antixenosis, antibiosis, and indirect resistance to aphids. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Takafuji K, Rim H, Kawauchi K, Mujiono K, Shimokawa S, Ando Y, Shiojiri K, Galis I, Arimura GI. Evidence that ERF transcriptional regulators serve as possible key molecules for natural variation in defense against herbivores in tall goldenrod. Sci Rep 2020; 10:5352. [PMID: 32210260 PMCID: PMC7093551 DOI: 10.1038/s41598-020-62142-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/06/2020] [Indexed: 11/15/2022] Open
Abstract
We collected Solidago altissima clones to explore their leaf damage resistance, and as a result identified five accessions that exhibited variable defense abilities against the generalist herbivore Spodoptera litura. In order to characterize molecules involved in such natural variation, we focused on ethylene response factors (ERFs) that exhibited distinct transcription patterns in the leaves of the five accessions (e.g., S1 and S2) after wounding: the transcript of SaERF1 and SaERF2 was induced in wounded S1 and S2 leaves, respectively. Although transcription levels of SaERFs in leaves of the five accessions did not correlate with the accessions’ phytohormone levels, these transcription levels accorded with the possibility that ethylene and jasmonate signaling play crucial roles in wound-induced transcription of SaERF1 in S1 leaves, and SaERF2 in S2 leaves, respectively. SaERF1 was found to be a positive regulator of the GCC box and DRE element in the upstream regions of promoters of defense genes, whereas SaERF2 served as a negative regulator of genes controlled through the GCC box. Transgenic Arabidopsis plants expressing SaERF1 or SaERF2 showed enhanced and suppressed transcript levels, respectively, of a defensin gene, indicating that ERFs may be partly responsible for herbivore resistance properties of S. altissima accessions.
Collapse
Affiliation(s)
- Kento Takafuji
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Hojun Rim
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Kentaro Kawauchi
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Kadis Mujiono
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan.,Faculty of Agriculture, Mulawarman University, Samarinda, 75119, Indonesia
| | - Saki Shimokawa
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Yoshino Ando
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, 060-0809, Japan
| | - Kaori Shiojiri
- Faculty of Agriculture, Ryukoku University, Otsu, 520-2194, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan
| | - Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan.
| |
Collapse
|
6
|
Thomas AM, Williams RS, Swarthout RF. Distribution of the Specialist Aphid Uroleucon nigrotuberculatum (Homoptera: Aphididae) in Response to Host Plant Semiochemical Induction by the Gall Fly Eurosta solidaginis (Diptera: Tephritidae). ENVIRONMENTAL ENTOMOLOGY 2019; 48:1138-1148. [PMID: 31222282 DOI: 10.1093/ee/nvz078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Many plants use terpenoids and other volatile compounds as semiochemicals. Reception of plant volatiles by conspecifics may trigger a defensive phytochemical response. These same compounds can also function as host recognition signals for phytophagous insects. In this experiment, we find that when the specialist gall-forming fly Eurosta solidaginis (Fitch; Diptera: Tephritidae) attacks its tall goldenrod (Solidago altissima (L.; Asterales: Asteraceae)) host plant, the fly indirectly induces a phytochemical response in nearby tall goldenrod plants. This phytochemical response may, in turn, act as a positive signal attracting the goldenrod specialist aphid Uroleucon nigrotuberculatum (Olive; Hemiptera: Aphididae). Laboratory-based experiments exposing ungalled tall goldenrod plants to the volatiles released by E. solidaginis galls demonstrated a consistent increase in foliar terpenoid concentrations in ungalled plants. Analysis of tall goldenrod stem and gall tissue chemistry revealed induction of terpenoids in gall tissue, with a simultaneous decrease in green leaf volatile concentrations. Field experiments demonstrated a consistent spatial relationship in tall goldenrod foliar terpenoid concentrations with distance from an E. solidaginis gall. Both laboratory and field experiments establish consistent induction of the terpene β-farnesene, and that this compound is a strong positive predictor of U. nigrotuberculatum aphid presence on goldenrod plants along with plant biomass and several other foliar terpenoids. These findings suggest E. solidaginis induced phytochemistry, especially β-farnesene, may be acting as a kairomone, driving aphid distribution in the field.
Collapse
Affiliation(s)
- Austin M Thomas
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC
| | - Ray S Williams
- Department of Biology, Appalachian State University, Boone, NC
| | | |
Collapse
|
7
|
Zytynska SE, Guenay Y, Sturm S, Clancy MV, Senft M, Schnitzler JP, Dilip Pophaly S, Wurmser C, Weisser WW. Effect of plant chemical variation and mutualistic ants on the local population genetic structure of an aphid herbivore. J Anim Ecol 2019; 88:1089-1099. [PMID: 30980387 DOI: 10.1111/1365-2656.12995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 03/11/2019] [Indexed: 11/27/2022]
Abstract
Plants exhibit impressive genetic and chemical diversity, not just between species but also within species, and the importance of plant intraspecific variation for structuring ecological communities is well known. When there is variation at the local population level, this can create a spatially heterogeneous habitat for specialised herbivores potentially leading to non-random distribution of individuals across host plants. Plant variation can affect herbivores directly and indirectly via a third species, resulting in variable herbivore growth rates across different host plants. Herbivores also exhibit within-species variation, with some genotypes better adapted to some plant variants than others. We genotyped aphids collected across 2 years from a field site containing ~200 patchily distributed host plants that exhibit high chemical diversity. The distribution of aphid genotypes, their ant mutualists, and other predators was assessed across the plants. We present evidence that the local distribution of aphid (Metopeurum fuscoviride) genotypes across host-plant individuals is associated with variation in the plant volatiles (chemotypes) and non-volatile metabolites (metabotypes) of their host plant tansy (Tanacetum vulgare). Furthermore, these interactions in the field were influenced by plant-host preferences of aphid-mutualist ants. Our results emphasise that plant intraspecific variation can structure ecological communities not only at the species level but also at the genetic level within species and that this effect can be enhanced through indirect interactions with a third species.
Collapse
Affiliation(s)
- Sharon E Zytynska
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Yasemin Guenay
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Sarah Sturm
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mary V Clancy
- Research Unit Environmental Simulation (EUS), Institute of Bio chemical Plant Pathology, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Matthias Senft
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Institute of Bio chemical Plant Pathology, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Saurabh Dilip Pophaly
- Population Genetics Research Group, Department of Plant Sciences, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Christine Wurmser
- Animal Breeding Research Group, Department of Animal Sciences, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Wolfgang W Weisser
- Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
8
|
Senft M, Clancy MV, Weisser WW, Schnitzler J, Zytynska SE. Additive effects of plant chemotype, mutualistic ants and predators on aphid performance and survival. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Matthias Senft
- Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Terrestrial Ecology Research GroupTechnical University of Munich Freising Germany
| | - Mary V. Clancy
- Helmholtz Zentrum München GmbH, Research Unit Environmental Simulations (EUS)Institute of Biochemical Plant Pathology Neuherberg Germany
| | - Wolfgang W. Weisser
- Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Terrestrial Ecology Research GroupTechnical University of Munich Freising Germany
| | - Jörg‐Peter Schnitzler
- Helmholtz Zentrum München GmbH, Research Unit Environmental Simulations (EUS)Institute of Biochemical Plant Pathology Neuherberg Germany
| | - Sharon E. Zytynska
- Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Terrestrial Ecology Research GroupTechnical University of Munich Freising Germany
| |
Collapse
|
9
|
Wise MJ. Defense with benefits? Ducking plants outperformed erect plants in the goldenrod Solidago gigantea in the absence of herbivory. AMERICAN JOURNAL OF BOTANY 2018; 105:1096-1103. [PMID: 29936699 DOI: 10.1002/ajb2.1105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Despite the fact that herbivores can be highly detrimental to their host plants' fitness, plant populations often maintain genetic variation for resistance to their natural enemies. Investigating the various costs (e.g., allocation tradeoffs, autotoxicity, and ecological costs) that may prevent plants from evolving to their fullest potential resistance has been a productive strategy for shedding insight into the eco-evolutionary dynamics of plant-herbivore communities. METHODS Recent studies have shown that some individuals of goldenrod (Solidago spp.) evade apex-attacking herbivores by a temporary nodding of their stem (i.e., resistance-by-ducking). Although ducking provides an obvious fitness benefit to these individuals, nonducking (erect) morphs persist in goldenrod populations. In this study, I investigated potential costs of ducking in Solidago gigantea in terms of tradeoffs involving growth and reproduction in a common garden experiment using field-collected seeds. KEY RESULTS The S. gigantea population contained substantial genetic variation for stem morph, with 28% erect and 72% ducking stems. In the absence of herbivory, ducking plants were taller, had thicker stems, and produced an average of 20% more seeds than erect plants. CONCLUSIONS This study suggests that resistance-by-ducking, instead of being costly, actually comes with additional, nondefense-related benefits. These results support the conclusion that the factors that constrain the evolution of resistance in plant populations are likely to be more subtle and complex than simple tradeoffs in resource allocation.
Collapse
Affiliation(s)
- Michael J Wise
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA, 24153
| |
Collapse
|
10
|
Williams RS, Howells JM. Effects of Intraspecific Genetic Variation and Prior Herbivory in an Old-Field Plant on the Abundance of the Specialist Aphid Uroleucon nigrotuberculatum (Hemiptera: Aphididae). ENVIRONMENTAL ENTOMOLOGY 2018; 47:422-431. [PMID: 29425269 DOI: 10.1093/ee/nvx196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intraspecific genetic variation in plants can contribute to the diversity and abundance of associated insects, though many questions remain about why some genotypes support more insects than others. Since plant secondary metabolites, which may be induced after insect attack, may potentially vary among genotypes, these compounds provide a possible explanation for insect abundance variation in plants with substantial genetic variation. In this study, we examined four genotypes of the old-field plant species Solidago altissima (L.; Asterales: Asteraceae) and asked if the abundance of the specialist aphid Uroleucon nigrotuberculatum (Olive; Hemiptera: Aphididae) was affected by genotype and previous foliage damage by a specialist beetle. We hypothesized that different genotypes and prior herbivory would result in different quantities of terpenes produced by S. altissima, and that terpenes would affect aphid abundance. We found evidence of foliar terpene induction in a greenhouse environment, and significant differences in terpene production among genotypes in a field setting, though prior damage had little effect on aphid abundance in the field. There were significant effects of genotypes on aphid abundance, as well as genotype effects on terpenes and foliar nutrients (leaf N and C:N). Noteworthy was a change in the allocation of particular terpenes among genotypes that related to aphid abundance. Our analyses demonstrated that phytochemicals, and especially terpenes, related to aphid abundance. This study adds to a previous finding that variation in leaf terpenes in S. altissima provides a partial explanation for variable abundance among genotypes of a specialist aphid, and suggests that differences in the allocation of compounds is important.
Collapse
Affiliation(s)
- Ray S Williams
- Department of Biology, Appalachian State University, Rivers Street, Boone, NC
| | | |
Collapse
|
11
|
Jakobs R, Müller C. Effects of intraspecific and intra-individual differences in plant quality on preference and performance of monophagous aphid species. Oecologia 2017; 186:173-184. [PMID: 29143149 DOI: 10.1007/s00442-017-3998-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/03/2017] [Indexed: 02/05/2023]
Abstract
Plant chemistry is one of the main drivers of herbivore distribution. Monophagous herbivore species are highly specialized, but even within their only host species the chemistry varies. The herbivore's choice is initially mainly guided by volatile plant compounds. Once on the plant, particularly for aphids the phloem quality affects their performance. However, little is known about the intraspecific and intra-individual variation in phloem sap and their influences on monophagous aphids. To determine potential mechanisms involved in aphid colonization, we tested the effects of intraspecific chemical variation in Tanacetum vulgare, which produces different chemotypes, on the preference of two monophagous aphid species. Moreover, we measured the performance of the aphids on different plant parts (stem close to the inflorescence, young and old leaves) of these chemotypes and analyzed their phloem sap composition. Both species preferred the β-thujone (THU) over the trans-carvyl acetate (CAR) chemotype in dual-choice assays. Survival of Macrosiphoniella tanacetaria was neither affected by intraspecific nor intra-individual variation, whereas the reproduction was highest on stems. In contrast, Uroleucon tanaceti survived and reproduced best on old leaves of the preferred chemotype. The sugar, organic acid and amino acid composition pronouncedly differed between phloem exudates of different plant parts, but less between chemotypes. Unexpectedly, high concentrations of amino acids did not necessarily enhance aphid performance. These different performance optima may cause niche differentiation and, therefore, enable co-existence. In conclusion, the tremendous variation in plant chemistry even within one species can affect the distribution of highly specialized aphids at various scales aphid species-specifically.
Collapse
Affiliation(s)
- Ruth Jakobs
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|