1
|
Broadhead GT, Cottrell TE, Beck JJ. Leaffooted Bugs: Insect Pest Species of Growing Concern for Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2467-2472. [PMID: 38264806 DOI: 10.1021/acs.jafc.3c06763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Leptoglossus (Hemiptera: Coreidae) are a diverse genus of phytophagous insects. Literature regarding Leptoglossus has increased as species are identified as emerging agricultural pests or reported outside of their native range. Within Leptoglossus, five species dominate the literature and are known pests and vectors of plant pathogenic microbes in several major crops. Despite the increasing profile of Leptoglossus, current monitoring and management methods rely primarily on visual inspection, and semiochemical tools have yet to be developed. This Perspective identifies and discusses gaps in the Leptoglossus literature as well as areas of research needed for the development of effective tools for monitoring insect populations and enabling informed pest-management practices.
Collapse
Affiliation(s)
- Geoffrey T Broadhead
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, Florida 32608, United States
| | - Ted E Cottrell
- Southeastern Fruit and Tree Nut Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Byron, Georgia 31008, United States
| | - John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, Florida 32608, United States
| |
Collapse
|
2
|
Konecka E. Fifty shades of bacterial endosymbionts and some of them still remain a mystery: Wolbachia and Cardinium in oribatid mites (Acari: Oribatida). J Invertebr Pathol 2022; 189:107733. [DOI: 10.1016/j.jip.2022.107733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
|
3
|
Interactions of the Intracellular Bacterium Cardinium with Its Host, the House Dust Mite Dermatophagoides farinae, Based on Gene Expression Data. mSystems 2021; 6:e0091621. [PMID: 34726490 PMCID: PMC8562489 DOI: 10.1128/msystems.00916-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dermatophagoides farinae is inhabited by an intracellular bacterium, Cardinium. Using correlations between host and symbiont gene expression profiles, we identified several important molecular pathways that potentially regulate/facilitate their interactions. The expression of Cardinium genes collectively explained 95% of the variation in the expression of mite genes assigned to pathways for phagocytosis, apoptosis, the MAPK signaling cascade, endocytosis, the tumor necrosis factor (TNF) pathway, the transforming growth factor beta (TGF-β) pathway, lysozyme, and the Toll/Imd pathway. In addition, expression of mite genes explained 76% of the variability in Cardinium gene expression. In particular, the expression of the Cardinium genes encoding the signaling molecules BamD, LepA, SymE, and VirD4 was either positively or negatively correlated with the expression levels of mite genes involved in endocytosis, phagocytosis, and apoptosis. We also found that Cardinium possesses a complete biosynthetic pathway for lipoic acid and may provide lipoate, but not biotin, to mites. Cardinium gene expression collectively explained 84% of the variation in expression related to several core mite metabolic pathways, and, most notably, a negative correlation was observed between bacterial gene expression and expression of mite genes assigned to the glycolysis and citric acid cycle pathways. Furthermore, we showed that Cardinium gene expression is correlated with expression levels of genes associated with terpenoid backbone biosynthesis. This pathway is important for the synthesis of pheromones, thus providing an opportunity for Cardinium to influence mite reproductive behavior to facilitate transmission of the bacterium. Overall, our study provided correlational gene expression data that can be useful for future research on mite-Cardinium interactions. IMPORTANCE The molecular mechanisms of mite-symbiont interactions and their impacts on human health are largely unknown. Astigmatid mites, such as house dust and stored-product mites, are among the most significant allergen sources worldwide. Although mites themselves are the main allergen sources, recent studies have indicated that mite-associated microbiomes may have implications for allergen production and human health. The major medically important house dust mite, D. farinae, is known to harbor a highly abundant intracellular bacterium belonging to the genus Cardinium. Expression analysis of the mite and symbiont genes can identify key mite molecular pathways that facilitate interactions with this endosymbiont and possibly shed light on how this bacterium affects mite allergen production and physiology in general.
Collapse
|
4
|
Gonella E, Orrù B, Marasco R, Daffonchio D, Alma A. Disruption of Host-Symbiont Associations for the Symbiotic Control and Management of Pentatomid Agricultural Pests-A Review. Front Microbiol 2020; 11:547031. [PMID: 33329418 PMCID: PMC7728854 DOI: 10.3389/fmicb.2020.547031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
The family Pentatomidae (Hemiptera: Heteroptera) includes several invasive stink bug species capable to attack a large number of wild and cultivated plants, causing several damages to different crops. Pentatomids rely on obligate symbiotic associations with bacteria of the family Enterobacteriaceae, mainly of the genus Pantoea. A distinctive trait of these associations is the transmission route: during oviposition, females smear egg masses with symbiont-containing secretions, which are ingested by newly hatched nymphs, allowing the symbiont to pass through their digestive tract and establish in the crypts of the posterior midgut. Preventing newborns from orally acquiring symbionts seriously affects their fitness and survival. This symbiont inheritance process can be manipulated to develop innovative pest control measures by sterilization of egg masses prior to nymph hatching. This review summarizes the recent knowledge advances concerning the gut primary symbionts of pentatomids, with a specific focus on the most troubling pest species for agriculture. Current understanding of host colonization dynamics in pentatomids is presented, as well as the phenotypic effects determined in different insect species by the alteration of vertical transmission. Details on the current knowledge on the whole bacterial communities accompanying primary symbionts are analyzed. The recent research exploiting the perturbation of symbiont acquisition by pentatomid nymphs is discussed, by considering published work on laboratory and field trials with several active substances. These translational strategies are presently regarded as promising for limiting the populations of many important pentatomid pests in a sustainable way.
Collapse
Affiliation(s)
- Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Turin, Italy
| | - Bianca Orrù
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Turin, Italy
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alberto Alma
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
5
|
Konecka E, Olszanowski Z, Jagiełło A. First report of Wolbachia in Damaeus onustus (Acari: Oribatida). ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01581-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Little is known about the distribution and phylogeny of bacterial endosymbionts in oribatid mites (Acari: Oribatida). Thus, we undertook the issue of occurrence of these microbial symbionts in this arthropod group.
Methods
We used PCR technique for detection of Wolbachia in Damaeus onustus. Phylogenetic analysis of the bacterium was conducted based on the 16S rDNA sequence.
Results
To the best of our knowledge, we present a novel finding of Wolbachia infection in the sexually reproducing oribatid mite, D. onustus. The presence of uninfected individuals (ca. 93%) suggests that the bacteria do not function as primary symbionts. A comparison of the bacterial 710-bp 16S rDNA sequence detected in the oribatid mite with the sequences deposited in GenBank revealed its 92–93% similarity to the 16S rDNA sequences of Wolbachia identified in some springtails (Collembola) and Bryobia sp. mite. Bacteria from D. onustus showed phylogenetic relationships with Wolbachia from springtails, Megalothorax minimus and Neelus murinus, which were included by other authors into a separate Wolbachia clade.
Conclusion
Our finding suggests that the strains of Wolbachia from D. onustus may form a new Wolbachia supergroup.
Collapse
|
6
|
Brückner A, Parker J. Molecular evolution of gland cell types and chemical interactions in animals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb211938. [PMID: 32034048 DOI: 10.1242/jeb.211938] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Across the Metazoa, the emergence of new ecological interactions has been enabled by the repeated evolution of exocrine glands. Specialized glands have arisen recurrently and with great frequency, even in single genera or species, transforming how animals interact with their environment through trophic resource exploitation, pheromonal communication, chemical defense and parental care. The widespread convergent evolution of animal glands implies that exocrine secretory cells are a hotspot of metazoan cell type innovation. Each evolutionary origin of a novel gland involves a process of 'gland cell type assembly': the stitching together of unique biosynthesis pathways; coordinated changes in secretory systems to enable efficient chemical release; and transcriptional deployment of these machineries into cells constituting the gland. This molecular evolutionary process influences what types of compound a given species is capable of secreting, and, consequently, the kinds of ecological interactions that species can display. Here, we discuss what is known about the evolutionary assembly of gland cell types and propose a framework for how it may happen. We posit the existence of 'terminal selector' transcription factors that program gland function via regulatory recruitment of biosynthetic enzymes and secretory proteins. We suggest ancestral enzymes are initially co-opted into the novel gland, fostering pleiotropic conflict that drives enzyme duplication. This process has yielded the observed pattern of modular, gland-specific biosynthesis pathways optimized for manufacturing specific secretions. We anticipate that single-cell technologies and gene editing methods applicable in diverse species will transform the study of animal chemical interactions, revealing how gland cell types are assembled and functionally configured at a molecular level.
Collapse
Affiliation(s)
- Adrian Brückner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
7
|
Konecka E, Olszanowski Z, Koczura R. Wolbachia of phylogenetic supergroup E identified in oribatid mite Gustavia microcephala (Acari: Oribatida). Mol Phylogenet Evol 2019; 135:230-235. [PMID: 30914397 DOI: 10.1016/j.ympev.2019.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 01/15/2023]
Abstract
Heritable endosymbionts have been observed in arthropod and nematode hosts. The most-known among them is Wolbachia. Although the bacterium was previously identified in oribatid mites (Acari: Oribatida), it was not assigned to any phylogenetic group. Endosymbionts have a profound influence on their hosts, playing various functions that affect invertebrate's biology such as changing the way of reproduction. Oribatida provide the very unique examples of groups in which even whole families appear to be thelytokous, so we considered that it is worth to investigate the occurrence of endosymbiotic microorganisms in oribatid mites, especially that the knowledge on the symbionts occurrence in this invertebrate group is negligible. We report for the first time Wolbachia in oribatid mite Gustavia microcephala. The sequences of 16S rDNA, gltA, and ftsZ genes of the endosymbiont from the mite showed the highest similarity to Wolbachia found in Collembola. Phylogenetic analysis based on single gene and concatenated alignments of three genes revealed that the bacteria from G. microcephala and Collembola were related and clustered together with supergroup E. Relatively close relationship of Wolbachia from oribatid and collembolan hosts might mean at the evolutionary scale that horizontal transfer of bacteria between these two groups of invertebrates may take place.
Collapse
Affiliation(s)
- Edyta Konecka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Ziemowit Olszanowski
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| | - Ryszard Koczura
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
8
|
Konecka E, Olszanowski Z. Phylogenetic analysis based on the 16S rDNA, gltA, gatB, and hcpA gene sequences of Wolbachia from the novel host Ceratozetes thienemanni (Acari: Oribatida). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 70:175-181. [PMID: 30708135 DOI: 10.1016/j.meegid.2019.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 11/20/2022]
Abstract
We determined the occurrence of intracellular endosymbionts (Wolbachia, Cardinium, Arsenophonus, Rickettsia, Spiroplasma, Hamiltonella, flavobacteria, and microsporidia) in oribatid mites (Acari: Oribatida) with the use of PCR technique. For the first time we looked for and detected Wolbachia in parthenogenetic oribatid mite Ceratozetes thienemanni Willmann, 1943. The 16S rDNA, gatB, hcpA, and gltA sequences of Wolbachia in C. thienemanni showed the highest similarity (≥ 90%) to the genes of Wolbachia from springtails (Collembola) and oribatid mite Gustavia microcephala. We found the unique sequence 5'-GGGGTAATGGCC-3' in 16S rDNA of Wolbachia from C. thienemanni and collembolan representing group E. The phylogeny of Wolbachia based on the analysis of single genes as well as concatenated alignments of four bacterial loci showed that the bacteria from C. thienemanni belonged to Wolbachia group E, like the endosymbionts from springtail hosts and G. microcephala. Considering coexisting of representatives of Oribatida and Collembola in the same soil habitat and similar food, it is possible that the source of Wolbachia infection was the same. Residues of dead invertebrates could be in organic matter of their soil food, so the scenario of infection transferred by eating of remains of soil cohabitates is also possible. It could explain the similarity and relationship of the Wolbachia in these two arthropod groups. Oribatid mite C. thienemanni is a parthenogenetic mite which is a unique feature in the genus Ceratozetes. Moreover, this species, within the entire genus Ceratozetes, is characterized by the most northerly distribution. It is difficult to determine either it is parthenogenesis or the presence of endosymbionts that are in some way responsible for this kind of evolutionary success. Maybe we are dealing here with a kind of synergy of both factors?
Collapse
Affiliation(s)
- Edyta Konecka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Ziemowit Olszanowski
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
9
|
A new Cardinium group of bacteria found in Achipteria coleoptrata (Acari: Oribatida). Mol Phylogenet Evol 2018; 131:64-71. [PMID: 30391314 DOI: 10.1016/j.ympev.2018.10.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/15/2018] [Accepted: 10/31/2018] [Indexed: 11/20/2022]
Abstract
The understanding of the biology of arthropods requires an understanding of their bacterial associates. We determined the distribution of bacteria Wolbachia sp., Rickettsia sp., Cardinium sp., Spiroplasma sp., Arsenophonus sp., Hamiltonella sp., and Flavobacterium in oribatid mites (Acari: Oribatida). We identified Cardinium sp. in Achipteria coleoptrata. This is the first report of this bacterium in A. coleoptrata. Approximately 30% of the mite population was infected by Cardinium sp. The Cardinium 16S rDNA was examined for the presence of two sequences unique for this microorganism. One of them was noted in Cardinium sp. of A. coleoptrata. In the second sequence, we found nucleotide substitution in the 7th position: A instead of T. In our opinion, this demonstrated the unique nature of Cardinium sp. of A. coleoptrata. We also determined phylogenetic relationship between Cardinium sp., including the strain found in A. coleoptrata by studying the 16S rRNA and gyrB gene sequences. It revealed that Cardinium from A. coleoptrata did not cluster together with strains from groups A, B, C or D, and constituted a separate clade E. These observations make A. coleoptrata a unique Cardinium host in terms of the distinction of the strain.
Collapse
|
10
|
|
11
|
Whitaker MRL, Salzman S, Sanders J, Kaltenpoth M, Pierce NE. Microbial Communities of Lycaenid Butterflies Do Not Correlate with Larval Diet. Front Microbiol 2016; 7:1920. [PMID: 27965647 PMCID: PMC5129467 DOI: 10.3389/fmicb.2016.01920] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
Herbivores possess many counteradaptations to plant defenses, and a growing body of research describes the role of symbiotic gut bacteria in mediating herbivorous diets among insects. However, persistent bacterial symbioses have not been found in Lepidoptera, despite the fact that perhaps 99% of the species in this order are herbivorous. We surveyed bacterial communities in the guts of larvae from 31 species of lycaenid butterflies whose caterpillars had diets ranging from obligate carnivory to strict herbivory. Contrary to our expectations, we found that the bacterial communities of carnivorous and herbivorous caterpillars do not differ in richness, diversity, or composition. Many of the observed bacterial genera are commonly found in soil and plant surfaces, and we detected known homopteran endosymbionts in the guts of homopterophagous species, suggesting that larvae acquire gut bacteria from their food and environment. These results indicate that lycaenid butterflies do not rely on specific bacterial symbioses to mediate their diverse diets, and provide further evidence of taxonomically depauperate bacterial communities among Lepidoptera.
Collapse
Affiliation(s)
- Melissa R L Whitaker
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, CambridgeMA, USA; Insect Symbiosis Research Group, Max Planck Institute for Chemical EcologyJena, Germany
| | - Shayla Salzman
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge MA, USA
| | - Jon Sanders
- Department of Pediatrics, University of California San Diego, La Jolla CA, USA
| | - Martin Kaltenpoth
- Insect Symbiosis Research Group, Max Planck Institute for Chemical EcologyJena, Germany; Department for Evolutionary Ecology, Johannes Gutenberg UniversityMainz, Germany
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge MA, USA
| |
Collapse
|