1
|
Wang G, Ji X, Nie L, Xu R. Exploring the proteins and metabolites associated with male antennae responses to female exposure of Antheraea pernyi (Lepidoptera: Saturniidae) moths. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1838-1849. [PMID: 37459048 DOI: 10.1093/jee/toad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 10/12/2023]
Abstract
Detection of sex pheromones of insects relies on the antennae. The female pheromone signal transmission in the male antennae ultimately initiates the courtship and mating behaviors of males. To investigate the proteins and metabolites involved in this neural transduction, integrative proteomics and metabolomics analysis including tandem mass tag (TMT) proteomic quantification and liquid chromatography tandem mass spectrometry (LC/MS)-based metabolomics was adopted for comparing proteomic and metabolic changes between the antennae of male moths following stimulation by females and the non-stimulated males of Antheraea pernyi (Guérin-Méneville, Lepidoptera: Saturniidae) in this study. A total of 92 differentially expressed proteins (DEPs) containing 52 upregulated and 40 downregulated proteins and 545 differentially expressed metabolites (DEMs) including 218 upregulated and 327 downregulated metabolites were identified from the antennae of female-stimulated male moths based on the proteome and metabolome data, respectively. Bioinformatics analysis was performed for the 45 DEPs and 160 DEMs, including Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encylopaedia of Genes and Genomes (KEGG) enrichment analysis and Human Metabolome Database (HMDB) annotation. A number of DEPs and DEMs related to neural transmission of female pheromone signals in the male antennae of A. pernyi were screened, including tyrosine hydroxylase, cryptochrome-1, tachykinin, arylalkylamine N-acetyltransferase, cadherin-23, glutathione S-transferase delta 3, tyramine, tryptamine, n-oleoyl dopamine, n-stearoyl dopamine, and n-stearoyl tyrosine. The altered expression levels of those proteins or metabolites were speculated involved in regulating the neuron activity for enhanced transmission of neural impulses and continuous perception, reception, and transduction of female pheromone signals. Our findings yielded novel insights into the potential mechanisms in the antennae of male A. pernyi responding to female attraction.
Collapse
Affiliation(s)
- Guobao Wang
- College of Biology and Oceanography, Weifang University, Weifang 261061, China
| | - Xiang Ji
- College of Biology and Oceanography, Weifang University, Weifang 261061, China
| | - Lei Nie
- Shandong Sericulture Research Institute, Shandong Academy of Agricultural Sciences, Yantai 264002, China
| | - Ruirui Xu
- College of Biology and Oceanography, Weifang University, Weifang 261061, China
| |
Collapse
|
2
|
Xin S, Zhang W. Construction and analysis of the protein-protein interaction network for the olfactory system of the silkworm Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21737. [PMID: 32926465 DOI: 10.1002/arch.21737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Olfaction plays an essential role in feeding and information exchange in insects. Previous studies on the olfaction of silkworms have provided a wealth of information about genes and proteins, yet, most studies have only focused on a single gene or protein related to the insect's olfaction. The aim of the current study is to determine key proteins in the olfactory system of the silkworm, and further understand protein-protein interactions (PPIs) in the olfactory system of Lepidoptera. To achieve this goal, we integrated Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses. Furthermore, we selected 585 olfactory-related proteins and constructed a (PPI) network for the olfactory system of the silkworm. Network analysis led to the identification of several key proteins, including GSTz1, LOC733095, BGIBMGA002169-TA, BGIBMGA010939-TA, GSTs2, GSTd2, Or-2, and BGIBMGA013255-TA. A comprehensive evaluation of the proteins showed that glutathione S-transferases (GSTs) had the highest ranking. GSTs also had the highest enrichment levels in GO and KEGG. In conclusion, our analysis showed that key nodes in the biological network had a significant impact on the network, and the key proteins identified via network analysis could serve as new research targets to determine their functions in olfaction.
Collapse
Affiliation(s)
- Shanghong Xin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Lin L, Zhang Y, Li Y, Fu H, Hu J, Zhou Y, Xu Y, Xia G, Sun X, Yang H, Shen Y. Identification of signature proteins of processed Bombyx batryticatus by comparative proteomic analysis. Int J Biol Macromol 2020; 153:289-296. [DOI: 10.1016/j.ijbiomac.2020.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
|
4
|
Wu H, Liu Y, Shi X, Zhang X, Ye C, Zhu KY, Zhu F, Zhang J, Ma E. Transcriptome analysis of antennal cytochrome P450s and their transcriptional responses to plant and locust volatiles in Locusta migratoria. Int J Biol Macromol 2020; 149:741-753. [PMID: 32018005 DOI: 10.1016/j.ijbiomac.2020.01.309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Cytochrome P450 monooxygenases (P450s) constitute a large superfamily of heme-thiolate proteins that are involved in the biosynthesis or degradation of endogenous compounds and detoxification of exogenous chemicals. It has been reported that P450s could serve as odorant-degrading enzymes (ODEs) to inactivate odorants to avoid saturating the antennae. However, there is little information about P450s in the antennae of Locusta migratoria. In the current work, we conducted an antenna transcriptome analysis and identified 92 P450s, including 68 full-length and 24 partial sequences. Phylogenetic analysis showed that 68 full-length P450s were grouped into four clans: CYP2, CYP3, CYP4, and mitochondria clans. Tissue, stage, and sex-dependent expressions of these 68 P450s were investigated. The results showed that 4 P450s were antenna-specific, whereas others were antenna-rich but also expressed in other tissues, implying their various potential roles in the antennae. In addition, the responses of seven selected P450s to five gramineous plant volatiles and four locust volatiles were determined. CYP6MU1 could be induced by almost all compounds tested, suggesting its important roles in odorant processing. Different P450s exhibited diverse responses to odorants, indicating that specific regulation of P450 expression by odorants might modulate the sensitivity of the olfactory responses to various chemicals.
Collapse
Affiliation(s)
- Haihua Wu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Yongmei Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xuekai Shi
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xueyao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Changlü Ye
- College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
5
|
Yu KE, Kim DH, Kim YI, Jones WD, Lee JE. Mass Spectrometry-Based Screening Platform Reveals Orco Interactome in Drosophila melanogaster. Mol Cells 2018; 41:150-159. [PMID: 29429152 PMCID: PMC5824025 DOI: 10.14348/molcells.2018.2305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 11/27/2022] Open
Abstract
Animals use their odorant receptors to receive chemical information from the environment. Insect odorant receptors differ from the G protein-coupled odorant receptors in vertebrates and nematodes, and very little is known about their protein-protein interactions. Here, we introduce a mass spectrometric platform designed for the large-scale analysis of insect odorant receptor protein-protein interactions. Using this platform, we obtained the first Orco interactome from Drosophila melanogaster. From a total of 1,186 identified proteins, we narrowed the interaction candidates to 226, of which only two-thirds have been named. These candidates include the known olfactory proteins Or92a and Obp51a. Around 90% of the proteins having published names likely function inside the cell, and nearly half of these intracellular proteins are associated with the endomembrane system. In a basic loss-of-function electrophysiological screen, we found that the disruption of eight (i.e., Rab5, CG32795, Mpcp, Tom70, Vir-1, CG30427, Eaat1, and CG2781) of 28 randomly selected candidates affects olfactory responses in vivo. Thus, because this Orco interactome includes physiologically meaningful candidates, we anticipate that our platform will help guide further research on the molecular mechanisms of the insect odorant receptor family.
Collapse
Affiliation(s)
- Kate E. Yu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141,
Korea
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113,
Korea
| | - Do-Hyoung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141,
Korea
| | - Yong-In Kim
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113,
Korea
| | - Walton D. Jones
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141,
Korea
| | - J. Eugene Lee
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113,
Korea
| |
Collapse
|
6
|
Yang H, Zheng J, Wang HY, Li N, Yang YY, Shen YP. Comparative Proteomic Analysis of Three Gelatinous Chinese Medicines and Their Authentications by Tryptic-digested Peptides Profiling using Matrix-assisted Laser Desorption/Ionization-time of Flight/Time of Flight Mass Spectrometry. Pharmacogn Mag 2017; 13:663-667. [PMID: 29200730 PMCID: PMC5701408 DOI: 10.4103/pm.pm_54_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/06/2017] [Indexed: 11/15/2022] Open
Abstract
Background: Gelatinous Chinese medicines (GCMs) including Asini Corii Colla, Testudinis Carapacis ET Plastri Colla, and Cervi Cornus Colla, were made from reptile shell or mammalian skin or deer horn, and consumed as a popular tonic, as well as hemopoietic and hemostatic agents. Misuse of them would not exert their functions, and fake or adulterate products have caused drug market disorder and affected food and drug safety. GCMs are rich in denatured proteins, but insufficient in available DNA fragments, hence commonly used cytochrome c oxidase I barcoding was not successful for their authentication. Objective: In this study, we performed comparative proteomic analysis of them and their animal origins to identify the composition of intrinsic proteins for the first time. Materials and Methods: A reliable and convenient approach was proposed for their authentication, by the incorporation of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two-dimensional electrophoresis, and matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF-MS). Results: A total of 26 proteins were identified from medicinal parts of original animals, and GCMs proteins presented in a dispersive manner in electrophoresis analyses due to complicated changes in the structure of original proteins caused by long-term decoction and the addition of ingredients during their manufacturing. In addition, by comparison of MALDI-TOF/TOF-MS profiling, 19 signature peptide fragments originated from the protein of GCM products were selected according to criteria. Conclusion: These could assist in the discrimination and identification of adulterates of GCMs and other ACMs for their form of raw medicinal material, the pulverized, and even the complex. SUMMARY Comparative proteomic analysis of three gelatinous Chinese medicines was conducted, and their authentications were based on tryptic-digested peptides profiling using matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry.
Abbreviations used: GCMs: Gelatinous Chinese medicines, COI: Cytochrome c oxidase I, SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, MALDI-TOF/TOF-MS: Matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry, LC: Liquid chromatography, ChP: Chinese Pharmacopoeia, HPLC: High performance liquid chromatography, LC-ESI+-MS: Liquid chromatography-electro spray ionization-mass spectrometry, IEF: isoelectric focusing, HCCA: α-Cyano-4-hydroxycinnamic acid.
Collapse
Affiliation(s)
- Huan Yang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.,Research Centre for Herbalomics and Drug Discovery, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jie Zheng
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hai-Yan Wang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Nan Li
- Department of Quality Assurance, Zhenjiang Institute for Drug Control, Zhenjiang 212050, China
| | - Ya-Ya Yang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yu-Ping Shen
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.,Research Centre for Herbalomics and Drug Discovery, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
7
|
Iovinella I, Caputo B, Calzetta M, Zwiebel LJ, Dani FR, Della Torre A. Profiles of soluble proteins in chemosensory organs of three members of the afro-tropical Anopheles gambiae complex. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 24:41-50. [PMID: 28822866 DOI: 10.1016/j.cbd.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
In female mosquitoes, host-seeking and preference as well as several other important behaviors are largely driven by olfaction. Species of the Afrotropical Anopheles gambiae complex display divergent host-preference that are associated with significant differences in their vectorial capacity for human malaria. Olfactory sensitivity begins with signal transduction and activation of peripheral sensory neurons that populate the antennae, maxillary palps and other appendages. We have used shotgun proteomics to characterize the profile of soluble proteins of antennae and maxillary palps of three different species: An. coluzzii, An. arabiensis and An. quadriannulatus that display remarkable differences in anthropophilic behavior. This analysis revealed interspecific differences in the abundance of several proteins that comprise cuticular components, glutathione S-transferase and odorant binding proteins, the latter of which known to be directly involved in odor recognition.
Collapse
Affiliation(s)
- Immacolata Iovinella
- Biology Department, Università di Firenze, Italy; Department of Public Health & Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, University of Rome "Sapienza", Rome, Italy
| | - Beniamino Caputo
- Department of Public Health & Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, University of Rome "Sapienza", Rome, Italy
| | - Maria Calzetta
- Department of Public Health & Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, University of Rome "Sapienza", Rome, Italy
| | - Laurence J Zwiebel
- Departments of Biological Sciences and Pharmacology, Vanderbilt University, Nashville, USA
| | - Francesca Romana Dani
- Biology Department, Università di Firenze, Italy; CISM, Mass Spectrometry Centre, Università di Firenze, Italy.
| | - Alessandra Della Torre
- Department of Public Health & Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|