1
|
Yang J, Wang Y, El Wakil A, Moussian B. Extra-corporeal detoxification in insects. Heliyon 2024; 10:e28392. [PMID: 38560219 PMCID: PMC10981100 DOI: 10.1016/j.heliyon.2024.e28392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Upon uptake of toxins, insects launch a detoxification program. This program is deployed in multiple organs and cells to raise their tolerance against the toxin. The molecular mechanisms of this program inside the insect body have been studied and understood in detail. Here, we report on a yet unexplored extra-corporeal detoxification of insecticides in Drosophila melanogaster. Wild-type D. melanogaster incubated with DDT, a contact insecticide, in a closed environment died as expected. However, incubation of a second cohort in the same environment after removal of the dead flies was not lethal. The effect was significantly lower if the flies of the two cohorts were unrelated. Incubation assays with Chlorpyrifos, another contact insecticide, yielded identical results, while incubation assays with Chlorantraniliprole, again a contact insecticide, was toxic for the second cohort of flies. A cohort of flies incubated in a DDT environment after an initial incubation of a honeybee survived treatment. Together, our data suggest that insects including Apis mellifera and D. melanogaster have the capacity to modify their proximate environment. Consequently, in their ecological niche, following individuals might be saved from intoxication thereby facilitating colonisation of an attractive site.
Collapse
Affiliation(s)
- Jing Yang
- Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, University of Tianjin, Tianjin, China
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| |
Collapse
|
2
|
Abstract
Bio-inspired surfaces enabling wet adhesion management are of significant interest for applications in the field of biomedicine, as components of bionic robots and as wearable devices. In the course of biological evolution, many organisms have evolved wet adhesive surfaces with strong attachment ability. Insects enhance their adhesion on contact substrates using secreted adhesive liquids. Here we discuss concepts of bio-inspired wet adhesion. First, remaining challenges associated with the understanding and the design of biological and artificial wet adhesive systems as well as strategies to supply adhesive liquids to their contact surfaces are reviewed. Then, future directions to construct wet adhesive surfaces with liquids are discussed in detail. Finally, a model of wet adhesion management with liquids is suggested, which might help the design of next-generation bio-inspired wet adhesive surfaces.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| | - Martin Steinhart
- Institut für Chemie neuer Materialien and CellNanOs, Universität Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
3
|
Awater-Salendo S, Voigt D, Hilker M, Fürstenau B. Cuticular Hydrocarbon Trails Released by Host Larvae Lose their Kairomonal Activity for Parasitoids by Solidification. J Chem Ecol 2021; 47:998-1013. [PMID: 34529198 PMCID: PMC8642257 DOI: 10.1007/s10886-021-01310-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Successful host search by parasitic wasps is often mediated by host-associated chemical cues. The ectoparasitoid Holepyris sylvanidis is known to follow chemical trails released by host larvae of the confused flour beetle, Tribolium confusum, for short-range host location. Although the hexane-extractable trails consist of stable, long-chain cuticular hydrocarbons (CHCs) with low volatility, the kairomonal activity of a trail is lost two days after release. Here, we studied whether this loss of kairomonal activity is due to changes in the chemical trail composition induced by microbial activity. We chemically analyzed trails consisting of hexane extracts of T. confusum larvae after different time intervals past deposition under sterile and non-sterile conditions. GC-MS analyses revealed that the qualitative and quantitative pattern of the long-chain CHCs of larval trails did not significantly change over time, neither under non-sterile nor sterile conditions. Hence, our results show that the loss of kairomonal activity of host trails is not due to microbially induced changes of the CHC pattern of a trail. Interestingly, the kairomonal activity of trails consisting of host larval CHC extracts was recoverable after two days by applying hexane to them. After hexane evaporation, the parasitoids followed the reactivated host trails as they followed freshly laid ones. Cryo-scanning electron microscopy showed that the trails gradually formed filament-shaped microstructures within two days. This self-assemblage of CHCs was reversible by hexane application. Our study suggests that the long-chain CHCs of a host trail slowly undergo solidification by a self-assembling process, which reduces the accessibility of CHCs to the parasitoid’s receptors as such that the trail is no longer eliciting trail-following behavior.
Collapse
Affiliation(s)
- Sarah Awater-Salendo
- Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Königin-Luise-Str.19, 14195, Berlin, Germany.,Dahlem Centre of Plant Science, Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Haderslebener Str.9, 12163, Berlin, Germany
| | - Dagmar Voigt
- Institute of Botany, Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Monika Hilker
- Dahlem Centre of Plant Science, Institute of Biology, Applied Zoology/Animal Ecology, Freie Universität Berlin, Haderslebener Str.9, 12163, Berlin, Germany
| | - Benjamin Fürstenau
- Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute, Königin-Luise-Str.19, 14195, Berlin, Germany.
| |
Collapse
|
4
|
Abstract
AbstractThe present ultrastructural investigation using scanning and transmission electron microscopy as well as light and fluorescence microscopy describes in detail the attachment devices and tarsal gland of the bug Coreus marginatus (L.) (Hemiptera: Coreidae). In particular, the fine structure of pulvilli reveals a ventral surface rich with pore channels, consistent with fluid emission, and a folded dorsal surface, which could be useful to enhance the pulvillus contact area during attachment to the substrate. The detailed description of the tarsal gland cells, whose structure is coherent with an active secretory function, allows us to consider the tarsal gland as the plausible candidate for the adhesive fluid production. Scolopidia strictly adhering to the gland cells are also described. On the basis of the fine structure of the tarsal gland, we hypothesise a fluid emission mechanism based on changes of the hydraulic pressure inside the gland, due to the unguitractor tendon movements. This mechanism could provide the fluid release based on compression of the pad and capillary suction, as demonstrated in other insects. The data here reported can contribute to understanding of insect adhesive fluid production, emission and control of its transport.
Collapse
|
5
|
Oi CA, Brown RL, da Silva RC, Wenseleers T. Reproduction and signals regulating worker policing under identical hormonal control in social wasps. Sci Rep 2020; 10:18971. [PMID: 33149171 PMCID: PMC7643062 DOI: 10.1038/s41598-020-76084-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
In social Hymenoptera, fertility and fertility signalling are often under identical hormonal control, and it has been suggested that such hormonal pleiotropies can help to maintain signal honesty. In the common wasp Vespula vulgaris, for example, fertile queens have much higher juvenile hormone (JH) titers than workers, and JH also controls the production of chemical fertility cues present on the females’ cuticle. To regulate reproductive division of labour, queens use these fertility cues in two distinct ways: as queen pheromones that directly suppress the workers’ reproduction as well as to mark queen eggs and enable the workers to recognize and police eggs laid by other workers. Here, we investigated the hormonal pleiotropy hypothesis by testing if experimental treatment with the JH analogue methoprene could enable the workers to lay eggs that evade policing. In support of this hypothesis, we find that methoprene-treated workers laid more eggs, and that the chemical profiles of their eggs were more queen-like, thereby causing fewer of their eggs to be policed compared to in the control. Overall, our results identify JH as a key regulator of both reproduction and the production of egg marking pheromones that mediate policing behaviour in eusocial wasps.
Collapse
Affiliation(s)
- Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium.
| | - Robert L Brown
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Rafael Carvalho da Silva
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
The Importance of Methyl-Branched Cuticular Hydrocarbons for Successful Host Recognition by the Larval Ectoparasitoid Holepyris sylvanidis. J Chem Ecol 2020; 46:1032-1046. [PMID: 33123870 PMCID: PMC7677283 DOI: 10.1007/s10886-020-01227-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Cuticular hydrocarbons (CHCs) of host insects are used by many parasitic wasps as contact kairomones for host location and recognition. As the chemical composition of CHCs varies from species to species, the CHC pattern represents a reliable indicator for parasitoids to discriminate host from non-host species. Holepyris sylvanidis is an ectoparasitoid of beetle larvae infesting stored products. Previous studies demonstrated that the larval CHC profile of the confused flour beetle, Tribolium confusum, comprises long chain linear and methyl-branched alkanes (methyl alkanes), which elicit trail following and host recognition in H. sylvanidis. Here we addressed the question, whether different behavioral responses of this parasitoid species to larvae of other beetle species are due to differences in the larval CHC pattern. Our study revealed that H. sylvanidis recognizes and accepts larvae of T. confusum, T. castaneum and T. destructor as hosts, whereas larvae of Oryzaephilus surinamensis were rejected. However, the latter species became attractive after applying a sample of T. confusum larval CHCs to solvent extracted larvae. Chemical analyses of the larval extracts revealed that CHC profiles of the Tribolium species were similar in their composition, while that of O. surinamensis differed qualitatively and quantitatively, i.e. methyl alkanes were present as minor components on the cuticle of all Tribolium larvae, but were absent in the O. surinamensis CHC profile. Furthermore, the parasitoid successfully recognized solvent extracted T. confusum larvae as hosts after they had been treated with a fraction of methyl alkanes. Our results show that methyl alkanes are needed for host recognition by H. sylvanidis.
Collapse
|
7
|
Gorb EV, Gorb SN. Attachment ability of females and males of the ladybird beetle Cryptolaemus montrouzieri to different artificial surfaces. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104011. [PMID: 31904387 DOI: 10.1016/j.jinsphys.2019.104011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/09/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
To test the effects of surface chemistry and surface roughness on the attachment ability of female and male Cryptolaemus montrouzieri beetles that are equipped with hairy adhesive pads, traction force experiments were performed on three artificial substrates: (1) hydrophobic smooth glass, (2) hydrophobic smooth epoxy resin, and (3) hydrophobic microrough epoxy resin. Also the micromorphology of the dorsal body side and adhesive pads in males and females was examined using a scanning electron microscopy. The traction force ranged from 0.13 to 3.60 mN in females and from 0.28 to 3.20 mN in males. The force values obtained on different test substrates showed highly significant differences and decreased in the following order of substrates: glass - smooth epoxy resin - microrough epoxy resin. In both females and males, the effect of surfaces was similar. The obtained results clearly showed that both surface parameters, chemistry and roughness, affected the attachment ability of beetles. Similar microstructure of adhesive pads in both sexes resulted in similar attachment performance of males and females on all test substrates.
Collapse
Affiliation(s)
- Elena V Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany.
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
8
|
Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, Ouyang G. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Anal Chim Acta 2019; 1077:67-86. [PMID: 31307724 DOI: 10.1016/j.aca.2019.05.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The determination of endogenous substances is of great significance for obtaining important biotic information such as biological components, metabolic pathways and disease biomarkers in different living organisms (e.g. plants, insects, animals and humans). However, due to the complex matrix and the trace concentrations of target analytes, the sample preparation procedure is an essential step before the analytes of interest are introduced into a detection instrument. Solid-phase microextraction (SPME), an emerging sample preparation technique that integrates sampling, extraction, concentration, and sample introduction into one step, has gained wide acceptance in various research fields, including in the determination of endogenous compounds. In this review, recent developments and applications of SPME for the determination of endogenous substances over the past five years are summarized. Several aspects, including the design of SPME devices (sampling configuration and coating), applications (in vitro and in vivo sampling), and coupling with emerging instruments (comprehensive two-dimensional gas chromatography (GC × GC), ambient mass spectrometry (AMS) and surface enhanced Raman scattering (SERS)) are involved. Finally, the challenges and opportunities of SPME methods in endogenous substances analysis are also discussed.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
| |
Collapse
|
9
|
Schnee L, Sampalla B, Müller JK, Betz O. A comparison of tarsal morphology and traction force in the two burying beetles Nicrophorus nepalensis and Nicrophorus vespilloides (Coleoptera, Silphidae). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:47-61. [PMID: 30680278 PMCID: PMC6334798 DOI: 10.3762/bjnano.10.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Our aim was to compare friction and traction forces between two burying beetle species of the genus Nicrophorus exhibiting different attachment abilities during climbing. Specifically, the interaction of adhesive hairs and claws during attachment with respect to various surface properties was investigated by using a 2 × 3 experimental design. Traction force was measured for two different surface energies (hydrophilic vs hydrophobic) varying in roughness from smooth to micro-rough to rough. Nanotribometric tests on single legs were also performed. The external morphology of the attachment devices investigated by scanning electron microscopy suggested higher intra-specific (intersexual) than inter-specific differences. Whereas differences between the two species in traction force were high on smooth surfaces, no differences could be detected between males and females within each species. With claws intact, both species showed the highest forces on rough surfaces, although N. nepalensis with clipped claws performed best on a smooth surface. However, N. nepalensis beetles outperformed N. vespilloides, which showed no differences between smooth and rough surfaces with clipped claws. Both species demonstrated poor traction forces on micro-rough surfaces. Results concerning the impact of surface polarity were inconclusive, whereas roughness more strongly affected the attachment performance in both species. Nanotribometric analyses of the fore tarsi performed on micro-rough and rough surfaces revealed higher friction in the proximal (pull) direction compared with the distal (push) direction. In these experiments, we detected neither differences in friction performance between the two species, nor clear trends concerning the influence of surface polarity. We conclude that the investigated morphological traits are not critical for the observed interspecific difference in attachment ability on smooth surfaces. Furthermore, interspecific differences in performance are only clear on smooth surfaces and vanish on micro-rough and rough surfaces. Our results suggest that even subtle differences in the adhesion-mediating secretion in closely related species might result in qualitative performance shifts.
Collapse
Affiliation(s)
- Liesa Schnee
- Institut für Evolution und Ökologie, Evolutionsbiologie der Invertebraten, Universität Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany
| | - Benjamin Sampalla
- Institut für Evolution und Ökologie, Evolutionsbiologie der Invertebraten, Universität Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany
| | - Josef K Müller
- Institut für Biologie I, Evolutionsbiologie & Ökologie, Albert-Ludwigs-Universität Freiburg, Hauptstr.1, 79104 Freiburg, Germany
| | - Oliver Betz
- Institut für Evolution und Ökologie, Evolutionsbiologie der Invertebraten, Universität Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Stark AY, Arstingstall K, Yanoviak SP. Adhesive performance of tropical arboreal ants varies with substrate temperature. ACTA ACUST UNITED AC 2018; 221:jeb.171843. [PMID: 29146768 DOI: 10.1242/jeb.171843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 11/09/2017] [Indexed: 11/20/2022]
Abstract
The surface temperature of tree branches in the tropical rainforest canopy can reach up to 55°C. Ants and other small cursorial organisms must maintain adequate attachment in this extreme microenvironment to forage effectively and avoid falling. Ant adhesion depends on liquid secretions that should become less viscous at high temperatures, causing ants to slip. However, tropical arboreal ants have high thermal tolerance and actively forage on hot canopy surfaces, suggesting that these ants can maintain adhesion on hot substrates. We measured tarsal pad shear adhesion of 580 workers (representing 11 species and four subfamilies) of tropical arboreal ants at temperatures spanning the range observed in the field (23-55°C). Adhesive performance among species showed three general trends: (1) a linear decrease with increasing temperature, (2) a non-linear relationship with peak adhesive performance at ca. 30-40°C, and (3) no relationship with temperature. The mechanism responsible for these large interspecific differences remains to be determined, but likely reflects variation in the composition of the secreted adhesive fluid. Understanding such differences will reveal the diverse ways that ants cope with highly variable, and often unpredictable, thermal conditions in the forest canopy.
Collapse
Affiliation(s)
- Alyssa Y Stark
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA
| | - Katherine Arstingstall
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA
| | - Stephen P Yanoviak
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA.,Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| |
Collapse
|
11
|
Fürstenau B, Hilker M. Cuticular Hydrocarbons of Tribolium confusum Larvae Mediate Trail Following and Host Recognition in the Ectoparasitoid Holepyris sylvanidis. J Chem Ecol 2017; 43:858-868. [DOI: 10.1007/s10886-017-0885-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 11/30/2022]
|
12
|
Schmitt C, Betz O. Morphology and ultrastructure of the tarsal adhesive organs of the Madagascar hissing cockroach Gromphadorhina portentosa. Cell Tissue Res 2017; 370:243-265. [DOI: 10.1007/s00441-017-2661-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/15/2017] [Indexed: 01/05/2023]
|
13
|
Arthropods Associate with their Red Wood ant Host without Matching Nestmate Recognition Cues. J Chem Ecol 2017; 43:644-661. [PMID: 28744733 DOI: 10.1007/s10886-017-0868-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/28/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
Abstract
Social insect colonies provide a valuable resource that attracts and offers shelter to a large community of arthropods. Previous research has suggested that many specialist parasites of social insects chemically mimic their host in order to evade aggression. In the present study, we carry out a systematic study to test how common such chemical deception is across a group of 22 arthropods that are associated with red wood ants (Formica rufa group). In contrast to the examples of chemical mimicry documented in some highly specialized parasites in previous studies, we find that most of the rather unspecialized red wood ant associates surveyed did not use mimicry of the cuticular hydrocarbon recognition cues to evade host detection. Instead, we found that myrmecophiles with lower cuticular hydrocarbon concentrations provoked less host aggression. Therefore, some myrmecophiles with low hydrocarbon concentrations appear to evade host detection via a strategy known as chemical insignificance. Others showed no chemical disguise at all and, instead, relied on behavioral adaptations such as particular defense or evasion tactics, in order to evade host aggression. Overall, this study indicates that unspecialized myrmecophiles do not require the matching of host recognition cues and advanced strategies of chemical mimicry, but can integrate in a hostile ant nest via either chemical insignificance or specific behavioral adaptations.
Collapse
|
14
|
Betz O, Frenzel M, Steiner M, Vogt M, Kleemeier M, Hartwig A, Sampalla B, Rupp F, Boley M, Schmitt C. Adhesion and friction of the smooth attachment system of the cockroach Gromphadorhina portentosa and the influence of the application of fluid adhesives. Biol Open 2017; 6:589-601. [PMID: 28507055 PMCID: PMC5450327 DOI: 10.1242/bio.024620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/27/2017] [Indexed: 11/20/2022] Open
Abstract
Two different measurement techniques were applied to study the attachment of the smooth foot pads of the Madagascar hissing cockroach Gromphadorhina portentosa The attachment of the non-manipulated adhesive organs was compared with that of manipulated ones (depletion or substitution by artificial secretions). From measurements of the friction on a centrifuge, it can be concluded that on nanorough surfaces, the insect appears to benefit from employing emulsions instead of pure oils to avoid excessive friction. Measurements performed with a nanotribometer on single attachment organs showed that, in the non-manipulated euplantulae, friction was clearly increased in the push direction, whereas the arolium of the fore tarsus showed higher friction in the pull direction. The surface of the euplantulae shows an imbricate appearance, whereupon the ledges face distally, which might contribute to the observed frictional anisotropy in the push direction. Upon depletion of the tarsal adhesion-mediating secretion or its replacement by oily fluids, in several cases, the anisotropic effect of the euplantula disappeared due to the decrease of friction forces in push-direction. In the euplantulae, adhesion was one to two orders of magnitude lower than friction. Whereas the tenacity was slightly decreased with depleted secretion, it was considerably increased after artificial application of oily liquids. In terms of adhesion, it is concluded that the semi-solid consistence of the natural adhesion-mediating secretion facilitates the detachment of the tarsus during locomotion. In terms of friction, on smooth to nanorough surfaces, the insects appear to benefit from employing emulsions instead of pure oils to avoid excessive friction forces, whereas on rougher surfaces the tarsal fluid rather functions in improving surface contact by keeping the cuticle compliable and compensating surface asperities of the substratum.
Collapse
Affiliation(s)
- Oliver Betz
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen D-72076, Germany
| | - Melina Frenzel
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen D-72076, Germany
| | - Michael Steiner
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen D-72076, Germany
| | - Martin Vogt
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen D-72076, Germany
| | - Malte Kleemeier
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, Bremen D-28359, Germany
| | - Andreas Hartwig
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, Bremen D-28359, Germany
- Universität Bremen, Fachbereich 2 Biologie/Chemie, Leobener Str., Bremen 28359, Germany
| | - Benjamin Sampalla
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen D-72076, Germany
| | - Frank Rupp
- University Hospital Tübingen, Section Medical Materials Science and Technology, Osianderstr. 2-8, Tübingen D-72076, Germany
| | - Moritz Boley
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen D-72076, Germany
| | - Christian Schmitt
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen D-72076, Germany
| |
Collapse
|
15
|
Gorb EV, Hofmann P, Filippov AE, Gorb SN. Oil adsorption ability of three-dimensional epicuticular wax coverages in plants. Sci Rep 2017; 7:45483. [PMID: 28367985 PMCID: PMC5377368 DOI: 10.1038/srep45483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/27/2017] [Indexed: 11/09/2022] Open
Abstract
Primary aerial surfaces of terrestrial plants are very often covered with three-dimensional epicuticular waxes. Such wax coverages play an important role in insect-plant interactions. Wax blooms have been experimentally shown in numerous previous studies to be impeding locomotion and reducing attachment of insects. Among the mechanisms responsible for these effects, a possible adsorption of insect adhesive fluid by highly porous wax coverage has been proposed (adsorption hypothesis). Recently, a great decrease in insect attachment force on artificial adsorbing materials was revealed in a few studies. However, adsorption ability of plant wax blooms was still not tested. Using a cryo scanning electron microscopy approach and high-speed video recordings of fluid drops behavior, followed by numerical analysis of experimental data, we show here that the three-dimensional epicuticular wax coverage in the waxy zone of Nepenthes alata pitcher adsorbs oil: we detected changes in the base, height, and volume of the oil drops. The wax layer thickness, differing in samples with untreated two-layered wax coverage and treated one-layered wax, did not significantly affect the drop behavior. These results provide strong evidence that three-dimensional plant wax coverages due to their adsorption capability are in general anti-adhesive for insects, which rely on wet adhesion.
Collapse
Affiliation(s)
- Elena V. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, Kiel, 24098, Germany
| | - Philipp Hofmann
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, Kiel, 24098, Germany
| | - Alexander E. Filippov
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, Kiel, 24098, Germany
- Department N5, Donetsk Institute for Physics and Engineering, R. Luxemburg Str. 72, Donetsk 83112, Ukraine
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, Kiel, 24098, Germany
| |
Collapse
|
16
|
Speidel MW, Kleemeier M, Hartwig A, Rischka K, Ellermann A, Daniels R, Betz O. Structural and tribometric characterization of biomimetically inspired synthetic "insect adhesives". BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:45-63. [PMID: 28144564 PMCID: PMC5238622 DOI: 10.3762/bjnano.8.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/14/2016] [Indexed: 05/12/2023]
Abstract
Background: Based on previous chemical analyses of insect tarsal adhesives, we prepared 12 heterogeneous synthetic emulsions mimicking the polar/non-polar principle, analysed their microscopical structure and tested their adhesive, frictional, and rheological properties. Results: The prepared emulsions varied in their consistency from solid rubber-like, over soft elastic, to fluid (watery or oily). With droplet sizes >100 nm, all the emulsions belonged to the common type of macroemulsions. The emulsions of the first generation generally showed broader droplet-size ranges compared with the second generation, especially when less defined components such as petrolatum or waxes were present in the lipophilic fraction of the first generation of emulsions. Some of the prepared emulsions showed a yield point and were Bingham fluids. Tribometric adhesion was tested via probe tack tests. Compared with the "second generation" (containing less viscous components), the "first generation" emulsions were much more adhesive (31-93 mN), a finding attributable to their highly viscous components, i.e., wax, petrolatum, gelatin and poly(vinyl alcohol). In the second generation emulsions, we attained much lower adhesivenesses, ranging between 1-18 mN. The adhesive performance was drastically reduced in the emulsions that contained albumin as the protein component or that lacked protein. Tribometric shear tests were performed at moderate normal loads. Our measured friction forces (4-93 mN in the first and 0.1-5.8 mN in the second generation emulsions) were comparatively low. Differences in shear performance were related to the chemical composition and emulsion structure. Conclusion: By varying their chemical composition, synthetic heterogeneous adhesive emulsions can be adjusted to have diverse consistencies and are able to mimic certain rheological and tribological properties of natural tarsal insect adhesives.
Collapse
Affiliation(s)
- Matthias W Speidel
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Malte Kleemeier
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, D-28359 Bremen, Germany
| | - Andreas Hartwig
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, D-28359 Bremen, Germany
- Universität Bremen, Fachbereich 2 Biologie/Chemie, Leobener Str., 28359 Bremen, Germany
| | - Klaus Rischka
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, D-28359 Bremen, Germany
| | - Angelika Ellermann
- Pharmazeutisches Institut, Universität Tübingen, Pharmazeutische Technologie und Biopharmazie, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | - Rolf Daniels
- Pharmazeutisches Institut, Universität Tübingen, Pharmazeutische Technologie und Biopharmazie, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | - Oliver Betz
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| |
Collapse
|