1
|
Wang Y, Di B, Sun Z, Sonali, Donovan-Mak M, Chen ZH, Wang MQ. Multi-Omics and Physiological Analysis Reveal Crosstalk Between Aphid Resistance and Nitrogen Fertilization in Wheat. PLANT, CELL & ENVIRONMENT 2025; 48:2024-2039. [PMID: 39545337 DOI: 10.1111/pce.15282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
The availability of nitrogen (N) can dramatically influence crops resistance to herbivorous insects. However, the interaction between N fertilization and crop resistance to insects is not well understood. In this study, the effects of N fertilization on the grain aphid (Sitobion miscanthi) were investigated using three wheat (Triticum aestivum) cultivars with different aphid resistances. We measured aphid life cycle parameters, fecundity, survival rate, weight and feeding behavior, in conjunction with wheat metabolomics, transcriptomics and alien introgression analysis. Our results demonstrated that higher N application benefits aphid feeding across all three wheat cultivars. We also reveal that the highly resistant cultivar (ZM9) can only exert its resistance-advantage under low N fertilization, losing its advantage compared to moderately resistant cultivar YN19 and susceptible cultivar YN23 under higher N fertilization. The effects of N fertilization on wheat-aphid interactions were due to changes in the regulation of carbon and nitrogen metabolism. Integration of multi-omics highlighted specific aphid-induced differentially expressed genes (DEGs, e.g., TUB6, Tubulin 6; ENODL20, Early nodulin-like protein 20; ACT7 Actin 7; Prx47, Peroxidase 47) and significantly different metabolites (SDMs, e.g., crotonoside, guanine, 2'-O-methyladenosine, ferulic acid) in ZM9. Additionally, we report the unique SDMs-DEGs interactions, associated with introgression during wheat domestication, may help infer aphid resistance. In summary, this study provides new insights into the relationships between N fertilization practices, defense responses and integrated pest management for sustainable wheat production.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Bin Di
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ze Sun
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sonali
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Michelle Donovan-Mak
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Akbar R, Sun J, Bo Y, Khattak WA, Khan AA, Jin C, Zeb U, Ullah N, Abbas A, Liu W, Wang X, Khan SM, Du D. Understanding the Influence of Secondary Metabolites in Plant Invasion Strategies: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:3162. [PMID: 39599372 PMCID: PMC11597624 DOI: 10.3390/plants13223162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
The invasion of non-native plant species presents a significant ecological challenge worldwide, impacting native ecosystems and biodiversity. These invasive plant species significantly affect the native ecosystem. The threat of invasive plant species having harmful effects on the natural ecosystem is a serious concern. Invasive plant species produce secondary metabolites, which not only help in growth and development but are also essential for the spread of these plant species. This review highlights the important functions of secondary metabolites in plant invasion, particularly their effect on allelopathy, defense system, interaction with micro soil biota, and competitive advantages. Secondary metabolites produced by invasive plant species play an important role by affecting allelopathic interactions and herbivory. They sometimes change the soil chemistry to make a viable condition for their proliferation. The secondary metabolites of invasive plant species inhibit the growth of native plant species by changing the resources available to them. Therefore, it is necessary to understand this complicated interaction between secondary metabolites and plant invasion. This review mainly summarizes all the known secondary metabolites of non-native plant species, emphasizing their significance for integrated weed management and research.
Collapse
Affiliation(s)
- Rasheed Akbar
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
- Department of Entomology, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur 22062, Khyber Pakhtunkhwa, Pakistan
| | - Jianfan Sun
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Wajid Ali Khattak
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Amir Abdullah Khan
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Cheng Jin
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Umar Zeb
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Najeeb Ullah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
| | - Wei Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaoyan Wang
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Shah Masaud Khan
- Department of Horticulture, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur 22062, Khyber Pakhtunkhwa, Pakistan
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (R.A.)
- Jingjiang College, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Wang H, Song J, Hunt BJ, Zuo K, Zhou H, Hayward A, Li B, Xiao Y, Geng X, Bass C, Zhou S. UDP-glycosyltransferases act as key determinants of host plant range in generalist and specialist Spodoptera species. Proc Natl Acad Sci U S A 2024; 121:e2402045121. [PMID: 38683998 PMCID: PMC11087754 DOI: 10.1073/pnas.2402045121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Phytophagous insects have evolved sophisticated detoxification systems to overcome the antiherbivore chemical defenses produced by many plants. However, how these biotransformation systems differ in generalist and specialist insect species and their role in determining insect host plant range remains an open question. Here, we show that UDP-glucosyltransferases (UGTs) play a key role in determining the host range of insect species within the Spodoptera genus. Comparative genomic analyses of Spodoptera species that differ in host plant breadth identified a relatively conserved number of UGT genes in generalist species but high levels of UGT gene pseudogenization in the specialist Spodoptera picta. CRISPR-Cas9 knockouts of the three main UGT gene clusters of Spodoptera frugiperda revealed that UGT33 genes play an important role in allowing this species to utilize the poaceous plants maize, wheat, and rice, while UGT40 genes facilitate utilization of cotton. Further functional analyses in vivo and in vitro identified the UGT SfUGT33F32 as the key mechanism that allows generalist S. frugiperda to detoxify the benzoxazinoid DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), a potent insecticidal phytotoxin produced by poaceous plants. However, while this detoxification capacity is conserved in several generalist Spodoptera species, Spodoptera picta, which specializes on Crinum plants, is unable to detoxify DIMBOA due to a nonfunctionalizing mutation in SpUGT33F34. Collectively, these findings provide insight into the role of insect UGTs in host plant adaptation, the mechanistic basis of evolutionary transitions between generalism and specialism and offer molecular targets for controlling a group of notorious insect pests.
Collapse
Affiliation(s)
- Huidong Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| | - Jing Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| | - Benjamin J. Hunt
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, United Kingdom
| | - Kairan Zuo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| | - Huiru Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| | - Angela Hayward
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, United Kingdom
| | - Bingbing Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| | - Yajuan Xiao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| | - Xing Geng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, United Kingdom
| | - Shutang Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng475004, Henan, China
| |
Collapse
|
4
|
Zhang L, Tu H, Tang F. Cloning of three epsilon-class glutathione S-transferase genes from Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) and their response to tannic acid. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:172-179. [PMID: 38327098 DOI: 10.1017/s0007485323000718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Micromelalopha troglodyta (Graeser) is an important pest of poplar in China, and glutathione S-transferase (GST) is an important detoxifying enzyme in M. troglodyta. In this paper, three full-length GST genes from M. troglodyta were cloned and identified. These GST genes all belonged to the epsilon class (MtGSTe1, MtGSTe2, and MtGSTe3). Furthermore, the expression of these three MtGSTe genes in different tissues, including midguts and fat bodies, and the MtGSTe expression in association with different concentrations of tannic acid, including 0.001, 0.01, 0.1, 1, and 10 mg ml-1, were analysed in detail. The results showed that the expression levels of MtGSTe1, MtGSTe2, and MtGSTe3 were all the highest in the fourth instar larvae; the expression levels of MtGSTe1 and MtGSTe3 were the highest in fat bodies, while the expression level of MtGSTe2 was the highest in midguts. Furthermore, the expression of MtGSTe mRNA was induced by tannic acid in M. troglodyta. These studies were helpful to clarify the interaction between plant secondary substances and herbivorous insects at a deep level and provided a theoretical foundation for controlling M. troglodyta.
Collapse
Affiliation(s)
- Ling Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Huizhen Tu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
5
|
Zhang G, Meng L, Chen R, Wang W, Jing X, Zhu-Salzman K, Cheng W. Characterization of three glutathione S-transferases potentially associated with adaptation of the wheat blossom midge Sitodiplosis mosellana to host plant defense. PEST MANAGEMENT SCIENCE 2024; 80:885-895. [PMID: 37814473 DOI: 10.1002/ps.7824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Insect glutathione S-transferases (GSTs), a multifunctional protein family, play a crucial role in detoxification of plant defensive compounds. However, they have been rarely investigated in Sitodiplosis mosellana, a destructive pest of wheat worldwide. In this study, we characterized for the first time a delta (SmGSTd1) and two epsilon GST genes (SmGSTe1 and SmGSTe2) and analyzed their expression patterns and functions associated with adaptation to host plant defense in this species. RESULTS Expression of these SmGST genes greatly increased in S. mosellana larvae feeding on resistant wheat varieties Kenong1006, Shanmai139 and Jinmai47 which contain higher tannin and ferulic acid, the major defensive compounds of wheat against this pest, compared with those feeding on susceptible varieties Xinong822, Xinong88 and Xiaoyan22. Their expression was also tissue-specific, most predominant in larval midgut. Recombinant SmGSTs expressed in Escherichia coli could catalyze the conjugation of 1-chloro-2,4-dinitrobenzene, with activity peak at pH around 7.0 and temperature between 30 and 40 °C. Notably, they could metabolize tannin and ferulic acid, with the strongest metabolic ability by SmGSTe2 against two compounds, followed by SmGSTd1 on tannin, and SmGSTe1 on ferulic acid. CONCLUSION The results suggest that these SmGSTs are important in metabolizing wheat defensive chemicals during feeding, which may be related to host plant adaptation of S. mosellana. Our study has provided information for future investigation and development of strategies such as host-induced gene silencing of insect-detoxifying genes for managing pest adaptation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guojun Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Linqin Meng
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Rui Chen
- Yantai City Research Centre for Rural Development of Chinese Academy of Social Sciences, Yantai, China
| | - Wen Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiangfeng Jing
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Weining Cheng
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Luo SH, Hua J, Liu Y, Li SH. The Chemical Ecology of Plant Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 124:57-183. [PMID: 39101984 DOI: 10.1007/978-3-031-59567-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Plants are excellent chemists with an impressive capability of biosynthesizing a large variety of natural products (also known as secondary or specialized metabolites) to resist various biotic and abiotic stresses. In this chapter, 989 plant natural products and their ecological functions in plant-herbivore, plant-microorganism, and plant-plant interactions are reviewed. These compounds include terpenoids, phenols, alkaloids, and other structural types. Terpenoids usually provide direct or indirect defense functions for plants, while phenolic compounds play important roles in regulating the interactions between plants and other organisms. Alkaloids are frequently toxic to herbivores and microorganisms, and can therefore also provide defense functions. The information presented should provide the basis for in-depth research of these plant natural products and their natural functions, and also for their further development and utilization.
Collapse
Affiliation(s)
- Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang, 110866, Liaoning Province, P. R. China
| | - Yan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, LiuTai Avenue 1166, Wenjiang District, Chengdu, 611137, Sichuan Province, P. R. China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China.
| |
Collapse
|
7
|
Yang J, Yan SY, Li GC, Guo H, Tang R, Ma R, Cai QN. The brown planthopper NlDHRS11 is involved in the detoxification of rice secondary compounds. PEST MANAGEMENT SCIENCE 2023; 79:4828-4838. [PMID: 37489868 DOI: 10.1002/ps.7681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND The brown planthopper (Nilaparvata lugens, BPH) is the most destructive serious pest in rice production. Resistant varieties are effective means to defend against BPH, but the impact of the ingestion of resistant rice on BPH transcriptional regulation is still unclear. Here, we explore the molecular basis of the regulation by BPH feeding on resistant rice. RESULTS BPH nymphs preferentially selected susceptible rice TN1 at 24 h after release in a choice test. Feeding on resistant rice IR56 under nonselective conditions increased mortality, decreased growth rate, and prolonged the molting time of BPH. Transcriptomic sequencing revealed 38 dysregulated genes, including 31 down-regulated and seven up-regulated genes in BPH feeding on resistant rice for 7 days compared with feeding on susceptible rice TN1. These genes were mainly involved in the pathways of growth and development, metabolism, energy synthesis, and transport. Finally, we showed that the toxicities of rice defensive compounds to BPH were dose-dependent, and silencing of the BPH gene dehydrogenase/reductase SDR family member 11 (NlDHRS11) increased sensibility to the rice secondary compounds ferulic acid and resorcinol. CONCLUSION The adaption of BPH feeding on resistant rice is orchestrated by dynamically regulating gene expressions, and NlDHRS11 is a gene involved in the detoxification of plant defensive chemicals. The current work provides new insights into the interaction between insects and plants, and will help to develop novel BPH control strategies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Yang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Shu-Ying Yan
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Guo
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Rui Tang
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Qing-Nian Cai
- College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Yang M, Li J, Qiao H, Guo K, Xu R, Wei H, Wei J, Liu S, Xu C. Feeding-induced plant metabolite responses to a phoretic gall mite, its carrier psyllid and both, after detachment. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:381-403. [PMID: 37882995 DOI: 10.1007/s10493-023-00854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Phoresy is one of the most distinctive relationships between mites and insects, and the off-host interaction between phoretic mites and their carriers is the most critical factor sustaining the phoretic association. As phoretic associations commonly occur in temporary habitats, little is known about off-host interactions between phoronts and carriers. However, an off-host interaction has been reported, in which the plant-mediated competition between a phoretic gall mite, Aceria pallida, and its psyllid vector, Bactericera gobica, after detachment decreases leaf abscission caused by B. gobica and then directly facilitates their phoretic association. In this obligate phoresy, A. pallida seasonally attaches to B. gobica for overwinter survival and they share the same host plant, Lycium barbarum, during the growing season. It is unknown how the host plant responds to these two herbivores and what plant metabolites are involved in their interspecific interaction. Here, effects of A. pallida and B. gobica on the host plant's transcriptome and metabolome, and on enzymes involved in plant defence, at various infestation stages were studied by inoculating A. pallida and B. gobica either separately or simultaneously on leaves of L. barbarum. Our results showed that (a) A. pallida significantly promoted primary and secondary metabolite accumulation, (b) B. gobica markedly inhibited primary and secondary metabolite accumulation and had little influence on defence enzyme activity, and (c) under simultaneous A. pallida and B. gobica infestation, an intermediate response was predicted. These findings indicate that A. pallida and B. gobica have different effects on host plants, A. pallida inhibits B. gobica mainly by increasing the secondary metabolism of L. barbarum, whereas B. gobica inhibits A. pallida mainly by decreasing the primary metabolism of L. barbarum. In conjunction with our previous research, we speculate that this trade-off in host plant metabolite response between A. pallida and B. gobica after detachment promotes a stable phoretic association.
Collapse
Affiliation(s)
- Mengke Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Jianling Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
- Qinghai Academy of Agriculture and Forestry Sciences, 253 Ningda Road, Chengbei District, Xining, Qinghai Province, 810016, China
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Kun Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Rong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Hongshuang Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Sai Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China.
| | - Changqing Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
9
|
He L, Shi Y, Ding W, Huang H, He H, Xue J, Gao Q, Zhang Z, Li Y, Qiu L. Cytochrome P450s genes CYP321A9 and CYP9A58 contribute to host plant adaptation in the fall armyworm Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2023; 79:1783-1790. [PMID: 36627818 DOI: 10.1002/ps.7355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The fall armyworm, Spodoptera frugiperda is one of the most destructive agricultural pests, which can complete their entire life cycle on various plants. At present, some detoxification genes have been proved to be involved in the adaptability to plants in insects. However, the genetics behind insect pest responses to host switches, and their ability to adapt to new host plants, remain poorly understood. This study was conducted to evaluate the adaptation of S. frugiperda to host plant and determine the roles of CYP321A9 and CYP9A58 in the detoxification metabolism of the fall armyworm. RESULTS The results revealed that feeding on maize was more suitable for S. frugiperda to develop compared with rice. In addition, knocking down of SfCYP321A9 and SfCYP9A58 resulted in a prolonged developmental time of S. frugiperda larvae that fed on rice. Meanwhile, RNAi knockdown of SfCYP321A9 resulted in significantly higher mortality of S. frugiperda larvae when exposed to the rice allelochemicals, ferulic acid, gramine and tricin. Furthermore, overexpression of SfCYP321A9 significantly reduced mortality in Drosophila melanogaster when exposed to gramine and tricin. CONCLUSION Our results suggest that CYP321A9 and CYP9A58 genes play a key role in host plant adaptation in S. frugiperda, which contribute to a greater understanding of the molecular basis of host plant adaptation and provide the means to develop effective management tools for S. frugiperda resistance. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yang Shi
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wenbing Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha, China
| | - Hong Huang
- Hunan Institute of Plant Protection, Changsha, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jin Xue
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Qiao Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhixiang Zhang
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
10
|
Chen L, Song J, Wang J, Ye M, Deng Q, Wu X, Wu X, Ren B. Effects of Methyl Jasmonate Fumigation on the Growth and Detoxification Ability of Spodoptera litura to Xanthotoxin. INSECTS 2023; 14:145. [PMID: 36835714 PMCID: PMC9966746 DOI: 10.3390/insects14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Methyl jasmonate (MeJA) is a volatile substance derived from jasmonic acid (JA), and it responds to interbiotic and abiotic stresses by participating in interplant communication. Despite its function in interplant communication, the specific role of MeJA in insect defense responses is poorly understood. In this study, we found that carboxylesterase (CarE) activities, glutathione-S-transferase (GSTs) activities, and cytochrome mono-oxygenases (P450s) content increased more after the feeding of diets containing xanthotoxin, while larvae exposed to MeJA fumigation also showed higher enzyme activity in a dose-dependent manner: lower and medium concentrations of MeJA induced higher detoxification enzyme activities than higher concentrations of MeJA. Moreover, MeJA improved the growth of larvae fed on the control diet without toxins and diets with lower concentrations of xanthotoxin (0.05%); however, MeJA could not protect the larvae against higher concentrations of xanthotoxin (0.1%, 0.2%). In summary, we demonstrated that MeJA is effective at inducing S. litura defense response, but the enhanced detoxifying ability could not overcome the strong toxins.
Collapse
Affiliation(s)
- Lina Chen
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| | - Jia Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jun Wang
- Guiyang Plant Protection and Quarantine Station, Guiyang 550081, China
| | - Mao Ye
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| | - Qianqian Deng
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| | - Xiaobao Wu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| | - Xiaoyi Wu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| | - Bing Ren
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| |
Collapse
|
11
|
Singla RK, Dhir V, Madaan R, Kumar D, Singh Bola S, Bansal M, Kumar S, Dubey AK, Singla S, Shen B. The Genus Alternanthera: Phytochemical and Ethnopharmacological Perspectives. Front Pharmacol 2022; 13:769111. [PMID: 35479320 PMCID: PMC9036189 DOI: 10.3389/fphar.2022.769111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Ethnopharmacological relevance: The genus Alternanthera (Amaranthaceae) comprises 139 species including 14 species used traditionally for the treatment of various ailments such as hypertension, pain, inflammation, diabetes, cancer, microbial and mental disorders. Aim of the review: To search research gaps through critical assessment of pharmacological activities not performed to validate traditional claims of various species of Alternanthera. This review will aid natural product researchers in identifying Alternanthera species with therapeutic potential for future investigation. Materials and methods: Scattered raw data on ethnopharmacological, morphological, phytochemical, pharmacological, toxicological, and clinical studies of various species of the genus Alternanthera have been compiled utilizing search engines like SciFinder, Google Scholar, PubMed, Science Direct, and Open J-Gate for 100 years up to April 2021. Results: Few species of Alternanthera genus have been exhaustively investigated phytochemically, and about 129 chemical constituents related to different classes such as flavonoids, steroids, saponins, alkaloids, triterpenoids, glycosides, and phenolic compounds have been isolated from 9 species. Anticancer, antioxidant, antibacterial, CNS depressive, antidiabetic, analgesic, anti-inflammatory, and immunomodulator effects have been explored in the twelve species of the genus. A toxicity study has been conducted on 3 species and a clinical study on 2 species. Conclusions: The available literature on pharmacological studies of Alternanthera species reveals that few species have been selected based on ethnobotanical surveys for scientific validation of their traditional claims. But most of these studies have been conducted on uncharacterized and non-standardized crude extracts. A roadmap of research needs to be developed for the isolation of new bioactive compounds from Alternanthera species, which can emerge out as clinically potential medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Vivek Dhir
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| | - Deepak Kumar
- Department of Health and Family Welfare, Civil Hospital, Rampura Phul, India
| | - Simranjit Singh Bola
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Monika Bansal
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| |
Collapse
|
12
|
Yang J, Kong XD, Zhu-Salzman K, Qin QM, Cai QN. The Key Glutathione S-Transferase Family Genes Involved in the Detoxification of Rice Gramine in Brown Planthopper Nilaparvata lugens. INSECTS 2021; 12:1055. [PMID: 34940143 PMCID: PMC8704333 DOI: 10.3390/insects12121055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022]
Abstract
Phytochemical toxins are considered a defense measure for herbivore invasion. To adapt this defensive strategy, herbivores use glutathione S-transferases (GSTs) as an important detoxification enzyme to cope with toxic compounds, but the underlying molecular basis for GST genes in this process remains unclear. Here, we investigated the basis of how GST genes in brown planthopper (BPH, Nilaparvata lugens (Stål)) participated in the detoxification of gramine by RNA interference. For BPH, the LC25 and LC50 concentrations of gramine were 7.11 and 14.99 μg/mL at 72 h after feeding, respectively. The transcriptions of seven of eight GST genes in BPH were induced by a low concentration of gramine, and GST activity was activated. Although interferences of seven genes reduced BPH tolerance to gramine, only the expression of NlGST1-1, NlGSTD2, and NlGSTE1 was positively correlated with GST activities, and silencing of these three genes inhibited GST activities in BPH. Our findings reveal that two new key genes, NlGSTD2 and NlGSTE1, play an essential role in the detoxification of gramine such as NlGST1-1 does in BPH, which not only provides the molecular evidence for the coevolution theory, but also provides new insight into the development of an environmentally friendly strategy for herbivore population management.
Collapse
Affiliation(s)
- Jun Yang
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.Y.); (X.-D.K.)
| | - Xiang-Dong Kong
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.Y.); (X.-D.K.)
- MOA Key Laboratory of Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A & M University, College Station, TX 77843, USA;
| | - Qing-Ming Qin
- College of Plant Sciences, Jilin University, Changchun 130062, China;
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Qing-Nian Cai
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.Y.); (X.-D.K.)
- MOA Key Laboratory of Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Ma J, Sun L, Zhao H, Wang Z, Zou L, Cao C. Functional identification and characterization of GST genes in the Asian gypsy moth in response to poplar secondary metabolites. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104860. [PMID: 34119211 DOI: 10.1016/j.pestbp.2021.104860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/29/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
The Asian gypsy moth, Lymantria dispar, as one of the most important forest pests in the world, can feed on more than 500 species of host plants, causing serious damage to the forests. Poplar is one of the favorite host plants of L. dispar. The present study aimed to explore the effects of poplar secondary metabolites on the growth and detoxification function of L. dispar larvae. We also aimed to study the expression of glutathione S-transferase (GST) genes in different developmental stages and in response to treatment with secondary metabolites. Six kinds of main secondary metabolites and three groups of characteristic mixed secondary metabolites were selected as follows: Caffeic acid, salicin, rutin, quercetin, catechol, flavone, mixture 1 (salicin and flavone), mixture 2 (salicin, caffeic acid and catechol), and mixture 3 (flavone, caffeic acid and catechol) according to the content changes of secondary metabolites in poplar. The thirteen GST genes were selected as candidate genes to study the expression of GST genes in different developmental stages and after treatment with secondary metabolites using quantitative real-time reverse transcription PCR. The LdGSTe4 and LdGSTo1 genes could be induced by secondary metabolites and were screened to explore their detoxification function against secondary metabolites using RNA interference technology. The results showed that salicin and rutin significantly induced the expression of LdGSTe4 and LdGSTo1. Under the stress of secondary metabolites, LdGSTe4 silencing affected the adaptability of L. dispar larvae to salicin and rutin. LdGSTe4 silencing resulted in a significant decrease in the body weight of L. dispar, but had little effect on the relative growth rate, relative consumption rate, efficiency of conversion of ingested food, efficiency of conversion of digested food, and approximate digestibility, as well as the survival rate and development time. These results provide a deeper understanding of the adaptive mechanism of L. dispar to host plants, form the foundation for the further research into the host resistance mechanism, and identify target genes for breeding resistant transgenic poplar.
Collapse
Affiliation(s)
- Jingyi Ma
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Hongying Zhao
- Institute of Forestry Protection, Heilongjiang Forestry Academy, Harbin 150081, PR China
| | - Zhenyue Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Li Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
14
|
Wang Y, Jin R, Liu C, Gao Y, Deng X, Wan H, Li J. Functional characterization of the transcription factors AhR and ARNT in Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104875. [PMID: 34119220 DOI: 10.1016/j.pestbp.2021.104875] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
In the present study, the aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) of Nilaparvata lugens were cloned and identified. The NlAhR and NlARNT expression levels significantly increased after imidacloprid, etofenprox and isoprocarb treatments. Knockdowns of NlAhR and NlARNT increased the susceptibility of N. lugens to imidacloprid, etofenprox and isoprocarb, and the detoxification enzyme activities were also significantly decreased. In addition, NlCYP301A1, NlGSTt1 and NlCarE7 were significantly down-regulated after injections of dsNlAhR and dsNlARNT, with the NlCarE7 expression decreasing by greater than 80%. Moreover, after knocking down NlCarE7, the susceptibility of N. lugens to etofenprox and isoprocarb significantly increased. Both NlAhR and NlARNT bound the NlCarE7 promoter and significantly enhanced the transcriptional activity. Our research revealed the functional roles of transcription factors NlAhR and NlARNT in the detoxification metabolism of N. lugens. The results provide a theoretical basis for the pest management and comprehensive control of N. lugens and increase our knowledge of insect toxicology.
Collapse
Affiliation(s)
- Yue Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ruoheng Jin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chaoya Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuanyuan Gao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaoqian Deng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hu Wan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
15
|
Lin Y, Ji H, Cao X, Cen Y, Chen Y, Ji S, Zheng S. Knockdown of AMP-activated protein kinase increases the insecticidal efficiency of pymetrozine to Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104856. [PMID: 33993974 DOI: 10.1016/j.pestbp.2021.104856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Insecticides are the main tools used to control Nilaparvata lugens (Stål), a serious pest of rice in Asia. However, repeated application of insecticides has caused many negative effects. Reducing the amount of insecticide used, while maintaining good pest population control, would be valuable. AMP-activated protein kinase (AMPK), a sensor of cellular energy status, helps to maintain insect energy balance at the cellular and whole-body level. The role of AMPK in insect response to insecticide stimulation is unknown. We studied the functions of AMPK catalytic subunit alpha (NlAMPKα) in the development of N. lugens and in response to pymetrozine, an insecticide used to control insect pests with piercing-sucking mouthparts. A phylogenetic analysis of protein sequences from 12 species in six orders showed that insects have only the AMPKα 2 subtype. RNA interference against NlAMPKα demonstrated that blocking the AMPK pathway led to a decrease in the systemic ATP level and an increase in N. lugens mortality. NlAMPKα responded to the energy stress caused by pymetrozine treatment, which activated downstream energy metabolic pathways to compensate for the energy imbalance. However, the ATP level in pymetrozine- treated nymphs was not increased, suggesting that ATP is consumed more than synthesized. When NlAMPKα expression was reduced in pymetrozine-treated nymphs by RNAi, the ATP level was decreased and the mortality was significantly increased. At day eight post 0.5 g/3 L of pymetrozine and dsNlAMPKα treatment, nymph survival was 29.33%, which was similar to the 27.33% survival of 1 g/3 L pymetrozine-treated nymphs. Addition of dsNlAMPKα can reduce the concentration of pymetrozine used by 50% while providing comparable efficacy. These results indicate that AMPK helps maintain the energy metabolism of N. lugens in response to pymetrozine treatment. Knockdown of NlAMPKα increases the insecticidal efficiency of pymetrozine to N. lugens.
Collapse
Affiliation(s)
- Yiguang Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Huijun Ji
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaocong Cao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yongjie Cen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yumei Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuangshun Ji
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
16
|
The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. Int J Mol Sci 2021; 22:ijms22031442. [PMID: 33535511 PMCID: PMC7867105 DOI: 10.3390/ijms22031442] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/26/2022] Open
Abstract
There is no argument to the fact that insect herbivores cause significant losses to plant productivity in both natural and agricultural ecosystems. To counter this continuous onslaught, plants have evolved a suite of direct and indirect, constitutive and induced, chemical and physical defenses, and secondary metabolites are a key group that facilitates these defenses. Polyphenols—widely distributed in flowering plants—are the major group of such biologically active secondary metabolites. Recent advances in analytical chemistry and metabolomics have provided an opportunity to dig deep into extraction and quantification of plant-based natural products with insecticidal/insect deterrent activity, a potential sustainable pest management strategy. However, we currently lack an updated review of their multifunctional roles in insect-plant interactions, especially focusing on their insect deterrent or antifeedant properties. This review focuses on the role of polyphenols in plant-insect interactions and plant defenses including their structure, induction, regulation, and their anti-feeding and toxicity effects. Details on mechanisms underlying these interactions and localization of these compounds are discussed in the context of insect-plant interactions, current findings, and potential avenues for future research in this area.
Collapse
|
17
|
Fermentation as an Alternative Process for the Development of Bioinsecticides. FERMENTATION 2020. [DOI: 10.3390/fermentation6040120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, insect pest control is carried out through the application of synthetic insecticides which have been related to harmful effects on both human and environmental health, as well as to the development of resistant pest populations. In this context, the development of new and natural insecticides is necessary. Agricultural and forestry waste or by-products are very low-cost substrates that can be converted by microorganisms into useful value-added bioactive products through fermentation processes. In this review we discuss recent discoveries of compounds obtained from fermented substrates along with their insecticidal, antifeedant, and repellent activities. Fermentation products obtained from agricultural and forestry waste are described in detail. The fermentation of the pure secondary metabolite such as terpenes and phenols is also included.
Collapse
|
18
|
Cen Y, Zou X, Li L, Chen S, Lin Y, Liu L, Zheng S. Inhibition of the glutathione biosynthetic pathway increases phytochemical toxicity to Spodoptera litura and Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104632. [PMID: 32711766 DOI: 10.1016/j.pestbp.2020.104632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Phytochemicals are toxic to insects, but their insecticidal efficiencies are usually low compared to synthetic insecticides. Understanding the mechanism of insect adaptation to phytochemicals will provide guidance for increasing their efficacy. Reduced glutathione (GSH) is a scavenger of reactive oxygen species (ROS) induced by phytochemicals. However, in insects, the pathway of GSH biosynthesis in response to phytochemicals is unclear. We found that exposure to 0.5% indole-3-methanol (I3C), xanthotoxin, and rotenone (ROT) significantly retarded the growth of Spodoptera litura larvae. The oxidative stress in S. litura larvae exposed to phytochemicals was increased. The up-regulation of glutamate cysteine ligase but not glutathione reductase revealed that the de novo synthesis pathway is responsible for GSH synthesis in phytochemical-treated larvae. Treatment with the inhibitor (BSO) of γ-glutamylcysteine synthetase (gclc), a subunit of glutamate cysteine ligase, resulted in decreases of GSH levels and GST activities, increases of ROS levels in I3C-treated larvae, which finally caused midgut necrosis and larval death. Treatment with BSO or I3C alone did not cause larval death. The addition of GSH could partly reduce the influence of I3C and BSO on S. litura growth. Nilaparvata lugens gclc RNAi confirmed the result of BSO treatment in S. litura. N. lugens gclc RNAi significantly increased the mortality of ROT-sprayed N. lugens, in which ROS levels were significantly increased. All data indicate that gclc is involved in insect response to phytochemical treatment. Treatment with dsgclc will increase the insecticidal efficacy of plant-derived compounds.
Collapse
Affiliation(s)
- Yongjie Cen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaopeng Zou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lanbin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuna Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yiguang Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
19
|
Quan PQ, Li MZ, Wang GR, Gu LL, Liu XD. Comparative transcriptome analysis of the rice leaf folder (Cnaphalocrocis medinalis) to heat acclimation. BMC Genomics 2020; 21:450. [PMID: 32605538 PMCID: PMC7325166 DOI: 10.1186/s12864-020-06867-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background The rice leaf folder Cnaphalocrocis medinalis Güenée is a serious insect pest of rice in Asia. This pest occurs in summer, and it is sensitive to high temperature. However, the larvae exhibit heat acclimation/adaptation. To understand the underlying mechanisms, we established a heat-acclimated strain via multigenerational selection at 39 °C. After heat shock at 41 °C for 1 h, the transcriptomes of the heat-acclimated (S-39) and unacclimated (S-27) larvae were sequenced, using the unacclimated larvae without exposure to 41 °C as the control. Results Five generations of selection at 39 °C led larvae to acclimate to this heat stress. Exposure to 41 °C induced 1160 differentially expressed genes (DEGs) between the heat-acclimated and unacclimated larvae. Both the heat-acclimated and unacclimated larvae responded to heat stress via upregulating genes related to sensory organ development and structural constituent of eye lens, whereas the unacclimated larvae also upregulated genes related to structural constituent of cuticle. Compared to unacclimated larvae, heat-acclimated larvae downregulated oxidoreductase activity-related genes when encountering heat shock. Both the acclimated and unacclimated larvae adjusted the longevity regulating, protein processing in endoplasmic reticulum, antigen processing and presentation, MAPK and estrogen signaling pathway to responsed to heat stress. Additionally, the unacclimated larvae also adjusted the spliceosome pathway, whereas the heat-acclimated larvae adjusted the biosynthesis of unsaturated fatty acids pathway when encountering heat stress. Although the heat-acclimated and unacclimated larvae upregulated expression of heat shock protein genes under heat stress including HSP70, HSP27 and CRYAB, their biosynthesis, metabolism and detoxification-related genes expressed differentially. Conclusions The rice leaf folder larvae could acclimate to a high temperature via multigenerational heat selection. The heat-acclimated larvae induced more DEGs to response to heat shock than the unacclimated larvae. The changes in transcript level of genes were related to heat acclimation of larvae, especially these genes in sensory organ development, structural constituent of eye lens, and oxidoreductase activity. The DEGs between heat-acclimated and unacclimated larvae after heat shock were enriched in the biosynthesis and metabolism pathways. These results are helpful to understand the molecular mechanism underlying heat acclimation of insects.
Collapse
Affiliation(s)
- Peng-Qi Quan
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming-Zhu Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gao-Rong Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling-Ling Gu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
20
|
Aidlin Harari O, Santos-Garcia D, Musseri M, Moshitzky P, Patel M, Visendi P, Seal S, Sertchook R, Malka O, Morin S. Molecular Evolution of the Glutathione S-Transferase Family in the Bemisia tabaci Species Complex. Genome Biol Evol 2020; 12:3857-3872. [PMID: 31971586 PMCID: PMC7058157 DOI: 10.1093/gbe/evaa002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2019] [Indexed: 01/23/2023] Open
Abstract
The glutathione S-transferase (GST) family plays an important role in the adaptation of herbivorous insects to new host plants and other environmental constrains. The family codes for enzymes that neutralize reactive oxygen species and phytotoxins through the conjugation of reduced glutathione. Here, we studied the molecular evolution of the GST family in Bemisia tabaci, a complex of >35 sibling species, differing in their geographic and host ranges. We tested if some enzymes evolved different functionality, by comparing their sequences in six species, representing five of the six major genetic clades in the complex. Comparisons of the nonsynonymous to synonymous substitution ratios detected positive selection events in 11 codons of 5 cytosolic GSTs. Ten of them are located in the periphery of the GST dimer, suggesting a putative involvement in interactions with other proteins. Modeling the tertiary structure of orthologous enzymes, identified additional 19 mutations in 9 GSTs, likely affecting the enzymes' functionality. Most of the mutation events were found in the environmentally responsive classes Delta and Sigma, indicating a slightly different delta/sigma tool box in each species. At a broader genomic perspective, our analyses indicated a significant expansion of the Delta GST class in B. tabaci and a general association between the diet breadth of hemipteran species and their total number of GST genes. We raise the possibility that at least some of the identified changes improve the fitness of the B. tabaci species carrying them, leading to their better adaptation to specific environments.
Collapse
Affiliation(s)
- Ofer Aidlin Harari
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mirit Musseri
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Pnina Moshitzky
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mitulkumar Patel
- Natural Resources Institute, University of Greenwich, Kent, United Kingdom
| | - Paul Visendi
- Natural Resources Institute, University of Greenwich, Kent, United Kingdom
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Kent, United Kingdom
| | | | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
21
|
Ke W, Tu C, Cao D, Lin X, Sun Q, Zhang Q. Molluscicidal activity and physiological toxicity of quaternary benzo[c]phenanthridine alkaloids (QBAs) from Macleaya cordata fruits on Oncomelania hupensis. PLoS Negl Trop Dis 2019; 13:e0007740. [PMID: 31603908 PMCID: PMC6808491 DOI: 10.1371/journal.pntd.0007740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/23/2019] [Accepted: 08/30/2019] [Indexed: 01/01/2023] Open
Abstract
Schistosomiasis is a serious worldwide parasitic disease. One of the best ways to control schistosomiasis is to control the population of Oncomelania hupensis snails. We sought to identify a high-efficiency biogenic molluscicide against Oncomelania with low toxicity, to avoid chemical molluscicide contamination and toxicity in aquatic organisms. We extracted quaternary benzo[c]phenanthridine alkaloids (QBAs) from Macleaya cordata fruits. Molluscicidal activity of the QBAs against Oncomelania was determined using bioassay. Our results showed that the extracted QBAs had a strong molluscicidal effect. In treatment of O. hupensis with QBAs for 48 h and 72 h, the lethal concentration (LC50) was 2.89 mg/L and 1.29 mg/L, respectively. The molluscicidal activity of QBAs was close to that of niclosamide (ethanolamine salt), indicating that QBAs have potential development value as novel biogenic molluscicides. We also analyzed physiological toxicity mechanisms by examining the activity of several important detoxification enzymes. We measured the effect of the extracted QBAs on the activities of glutathione S-transferase (GST), carboxylesterase (CarE), acid phosphatase (ACP), and alkaline phosphatase (AKP) in the liver of O. hupensis. We found that the effects of QBAs on detoxification metabolism in O. hupensis were time and concentration dependent. The activities of GST, CarE, AKP, and ACP in the liver of snails increased significantly in the early stage of treatment (24 h), but decreased sharply in later stages (120 h), compared with these activities in controls. GST, CarE, AKP, and ACP activity in the liver of snails treated with LC50 QBAs for 120 h decreased by 62.3%, 78.1%, 59.2%, and 68.6%, respectively. Our results indicate that these enzymes were seriously inhibited by the extracted QBAs and the detoxification and metabolic functions of the liver gradually weakened, leading to poisoning, which could be the main cause of death in O. hupensis snails.
Collapse
Affiliation(s)
- Wenshan Ke
- Green Resources Transformation and Collaborative Innovation Center, and State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, PR China
| | - Chang Tu
- Green Resources Transformation and Collaborative Innovation Center, and State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, PR China
| | - Dezhi Cao
- The First Affiliated Hospital of Huanghuai University, Zhumadian, PR China
| | - Xiong Lin
- Green Resources Transformation and Collaborative Innovation Center, and State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, PR China
| | - Qiqiang Sun
- Research Institute of Forestry Chinese Academy of Forestry, Beijing, PR China
| | - Qian Zhang
- Research Institute of Forestry Chinese Academy of Forestry, Beijing, PR China
| |
Collapse
|
22
|
Pan BY, Li GY, Wu Y, Zhou ZS, Zhou M, Li C. Glucose Utilization in the Regulation of Chitin Synthesis in Brown Planthopper. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5574393. [PMID: 31557289 PMCID: PMC6761884 DOI: 10.1093/jisesa/iez081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Glucose-6-phosphatase (G6Pase) and hexokinase (HK) are two key enzymes in the glycolysis and gluconeogenesis pathways, which catalyze the synthesis and degradation of glucose in insects, respectively. G6Pase and HK play an important role in insect growth by regulating the metabolism of glucose, leading to the efficient metabolism of other macromolecules. However, it is unclear whether these genes could be investigated for pest control through their actions on chitin metabolism. We studied the potential functions of G6Pase and HK genes in the regulation of chitin metabolism pathways by RNAi technology. Interference with G6Pase expression did not affect trehalose and chitin metabolism pathways in brown planthopper, Nilaparvata lugens (Stål). However, knockdown of the HK gene resulted in a significant decrease of expression of genes associated with the trehalose metabolic pathway but had no significant effect on trehalase activity, trehalose content, or glucogen content. Additionally, HK knockdown resulting in downregulation of the genes involved in chitin metabolism in the brown planthopper. These insects also showed wing deformities and difficulty in molting to varying degrees. We suggest that the silencing of HK expression directly inhibited the decomposition of glucose, leading to impaired chitin synthesis.
Collapse
Affiliation(s)
- Bi-Ying Pan
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, P.R. China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, P.R. China
| | - Guo-Yong Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, P.R. China
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, P.R. China
| | - Zhong-Shi Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, P.R. China
| | - Min Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, P.R. China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, P.R. China
| |
Collapse
|
23
|
Sun X, Gong Y, Ali S, Hou M. Mechanisms of resistance to thiamethoxam and dinotefuran compared to imidacloprid in the brown planthopper: Roles of cytochrome P450 monooxygenase and a P450 gene CYP6ER1. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 150:17-26. [PMID: 30195383 DOI: 10.1016/j.pestbp.2018.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/09/2018] [Accepted: 06/16/2018] [Indexed: 05/27/2023]
Abstract
The brown planthopper (BPH, Nilaparvata lugens) has developed high resistance to the first-generation neonicotinoids (imidacloprid). With commercialization and widespread field use of the second-(thiamethoxam) and third-(dinotefuran) generation neonicotinoids, resistance to these insecticides is also reported. We investigated the cytochrome P450 monooxygenase-mediated detoxification in thiamethoxam- and dinotefuran- resistant in comparison to imidacloprid-resistant strains of BPH. In the three moderately resistant BPH strains selected separately with the three insecticides from a same susceptible strain, P450 activities were significantly enhanced over the susceptible control. Seven of 26 tested P450 genes were up-regulated and CYP6ER1 was a strongly over-expressed gene in all the three resistant strains. Knockdown of CYP6ER1 in the susceptible insects reduced P450 activity, retarded nymph growth and significantly increased sensitivity to each one of the three neonicotinoids. Taken together, we show that enhanced P450 activity and over-expression of CYP6ER1 gene are involved in BPH resistance to thiamethoxam and dinotefuran as to imidacloprid. These findings are of significance in management thiamethoxam and dinotefuran resistance in the BPH, especially in the management of potential cross-resistance to the three generations of neonicotinoids.
Collapse
Affiliation(s)
- Xiaoqin Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin 541399, China
| | - Youhui Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin 541399, China
| | - Shahbaz Ali
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin 541399, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin 541399, China; Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China.
| |
Collapse
|
24
|
Eakteiman G, Moses-Koch R, Moshitzky P, Mestre-Rincon N, Vassão DG, Luck K, Sertchook R, Malka O, Morin S. Targeting detoxification genes by phloem-mediated RNAi: A new approach for controlling phloem-feeding insect pests. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 100:10-21. [PMID: 29859812 DOI: 10.1016/j.ibmb.2018.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Many phloem-feeding insects are considered severe pests of agriculture and are controlled mainly by chemical insecticides. Continued extensive use of these inputs is environmentally undesirable, and also leads to the development of insecticide resistance. Here, we used a plant-mediated RNA interference (RNAi) approach, to develop a new control strategy for phloem-feeding insects. The approach aims to silence "key" detoxification genes, involved in the insect's ability to neutralize defensive and toxic plant chemistry. We targeted a glutathione S-transferase (GST) gene, BtGSTs5, in the phloem-feeding whitefly Bemisia tabaci, a devastating global agricultural pest. We report three major findings. First, significant down regulation of the BtGSTs5 gene was obtained in the gut of B. tabaci when the insects were fed on Arabidopsis thaliana transgenic plants expressing dsRNA against BtGSTs5 under a phloem-specific promoter. This brings evidence that phloem-feeding insects can be efficiently targeted by plant-mediated RNAi. Second, in-silico and in-vitro analyses indicated that the BtGSTs5 enzyme can accept as substrates, hydrolyzed aliphatic- and indolic-glucosinolates, and produce their corresponding detoxified conjugates. Third, performance assays suggested that the BtGSTs5 gene silencing prolongs the developmental period of B. tabaci nymphs. Taken together, these findings suggest that BtGSTs5 is likely to play an important role in enabling B. tabaci to successfully feed on glucosinolate-producing plants. Targeting the gene by RNAi in Brassicaceae cropping systems, will likely not eliminate the pest populations from the fields but will significantly reduce their success over the growing season, support prominent activity of natural enemies, eventually allowing the establishment of stable and sustainable agroecosystem.
Collapse
Affiliation(s)
- Galit Eakteiman
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100 Israel.
| | - Rita Moses-Koch
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| | - Pnina Moshitzky
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| | | | - Daniel G Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Katrin Luck
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| |
Collapse
|
25
|
He P, Engsontia P, Chen GL, Yin Q, Wang J, Lu X, Zhang YN, Li ZQ, He M. Molecular characterization and evolution of a chemosensory receptor gene family in three notorious rice planthoppers, Nilaparvata lugens, Sogatella furcifera and Laodelphax striatellus, based on genome and transcriptome analyses. PEST MANAGEMENT SCIENCE 2018; 74:2156-2167. [PMID: 29542232 DOI: 10.1002/ps.4912] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 02/28/2024]
Abstract
BACKGROUND The white-backed planthopper (WBPH) Sogatella furcifera, the brown planthopper (BPH) Nilaparvata lugens, and the small brown planthopper (SBPH) Laodelphax striatellus (Hemiptera: Delphacidae) are rice pests that damage rice plants by sap-sucking and by transmitting viruses. Host-seeking behavior involves chemosensory receptor genes that include odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs). RESULTS We used genome and transcriptome data to identify 141 ORs, 28 GRs and 25 IRs in BPH; 135 ORs, 18 GRs and 16 IRs in WBPH; and 37 ORs, 14 GRs and 6 IRs in SBPH. A phylogenetic analysis identified several specific OR clades of rice planthoppers, the results indicating that these OR members might be used to respond to specific host volatiles. OR co-receptor (Orco) is the most conserved and essential OR gene among these species and RNA interference (RNAi) can decrease their mRNA expression level to <50%. RNAi knockdown rice planthoppers were anosmia and were unable to seek or locate rice plants in behavioral tests. CONCLUSION The results demonstrate the importance of the planthopper Orco genes in locating rice plants. This information may aid in the development of RNAi-based transgenic rice and other pest management technologies. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| | - Patamarerk Engsontia
- Molecular Ecology and Evolution Research Unit, Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Guang-Lei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| | - Qian Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu Province, People's Republic of China
| | - Jun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| | - Xu Lu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, People's Republic of China
| | - Zhao-Qun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, People's Republic of China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, People's Republic of China
| |
Collapse
|
26
|
Lu K, Wang Y, Chen X, Zhang Z, Li Y, Li W, Zhou Q. Characterization and functional analysis of a carboxylesterase gene associated with chlorpyrifos resistance in Nilaparvata lugens (Stål). Comp Biochem Physiol C Toxicol Pharmacol 2017; 203:12-20. [PMID: 29054582 DOI: 10.1016/j.cbpc.2017.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 12/31/2022]
Abstract
The widespread and extensive application of insecticides have promoted the development of resistance in the brown planthopper Nilaparvata lugens (Stål), one of the most important rice pests in Asia. To better understand the underlying molecular mechanisms of metabolic resistance to insecticides, a chlorpyrifos-resistant (CR) strain of N. lugens was selected and its possible resistance mechanism was investigated. Synergistic tests using carboxylesterases (CarEs) inhibitor triphenyl phosphate (TPP) decreased the resistance of N. lugens to chlorpyrifos, and CarE activities could be induced by low concentrations of chlorpyrifos. Subsequently, a gene putatively encoding CarE, namely NlCarE, predominant in the midgut and ovary was isolated and characterized. The expression levels of NlCarE were detected and compared between the CR and a susceptible (SS) strain of N. lugens. Consistent with the increased CarE activity, this gene was overexpressed in the CR strain compared to the SS strain. The transcript levels of NlCarE were up-regulated by chlorpyrifos exposure, showing dose- and time-dependent expression patterns. Furthermore, RNA interference (RNAi)-mediated knockdown of NlCarE followed by insecticide application significantly increased the susceptibility of N. lugens to chlorpyrifos. These results demonstrate that NlCarE plays an important role in chlorpyrifos detoxification and its overexpression may be involved in chlorpyrifos resistance in N. lugens.
Collapse
Affiliation(s)
- Kai Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ying Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xia Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhichao Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yue Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Wenru Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|