1
|
Chen Y, Sha A, Xu M, Rao Z, Zhang X. Elucidating styrene tolerance mechanisms in Gluconobacter oxydans through adaptive laboratory evolution. BIORESOURCE TECHNOLOGY 2025; 429:132509. [PMID: 40209913 DOI: 10.1016/j.biortech.2025.132509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/05/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Biodegradation of styrene utilizing Gluconobacter oxydans (G. oxydans) is affected by the inhibitory and toxic effects of styrene concentrations. In this study, evolution experiments were conducted at low concentrations to mimic typical wastewater conditions to develop G. oxydans mutants with enhanced styrene tolerance. Physiological and biochemical analyses reveal that styrene hinders normal cell growth and damages cell membrane function and motility. Nevertheless, phenotypic heterogeneity and enhanced biofilm formation emerged as primary factors contributing to high styrene tolerance. Mutations in the flagella protein FlgE primarily affects cell motility, chemotaxis, and biofilm formation. TFs MarR and HipB positively regulate the tolerance phenotypes, with MarR playing a more pivotal role than HipB in regulating styrene tolerance, supporting tolerance up to 22 g·L-1 of styrene. This study clarifies potential mechanisms underlying styrene tolerance and, offering valuable insights for the application of G. oxydans in treating styrene-laden wastewater.
Collapse
Affiliation(s)
- Yan Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122 Jiangsu, China
| | - Aobo Sha
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122 Jiangsu, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122 Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122 Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122 Jiangsu, China.
| |
Collapse
|
2
|
Yaqoob S, Khan FA, Tanveer N, Ali S, Hameed A, El-Seedi H, Jiang ZH, Wang Y. Exploring the Potential of Pyridine Carboxylic Acid Isomers to Discover New Enzyme Inhibitors. Drug Des Devel Ther 2025; 19:4039-4091. [PMID: 40420948 PMCID: PMC12104547 DOI: 10.2147/dddt.s513461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 05/01/2025] [Indexed: 05/28/2025] Open
Abstract
Pyridine carboxylic acid isomers - picolinic acid, nicotinic acid, and isonicotinic acid - have historically resulted in a plethora of drugs against tuberculosis, cancer, diabetes, Alzheimer's, angina, dementia, depression, allergy, respiratory acidosis, psoriasis, acne, hypertension, hyperlipidemia, HIV/AIDS (specifically HIV-1), among others. Despite the large number of therapeutic agents derived from these isomers, the research involving these scaffolds is still exceptionally active. The current surge in enzyme inhibitory activities by the compounds derived from them has further created space for the discovery of new drug candidates. This review focuses on the medicinal relevance of these isomers by analyzing structure-activity relationships (SARs) and highlighting emerging trends from patents filed over the last decade. Notably, pharmaceutical giants like Bayer, Bristol-Myers Squibb, Novartis, Curis, and Aurigene have developed enzyme inhibitors based on these scaffolds with nanomolar potency. The role of these isomers in the development of antiviral agents, including protease inhibitors, is also discussed. Overall, this review brings to the readers, a pragmatic opportunity to comprehend the recent literature, highlighting the scaffolds' importance in the design of new enzyme inhibitors. Furthermore, it discusses the structure-activity relationship of pyridine carboxylic acid-derived compounds and highlights the current patenting trends in medicinal chemistry.
Collapse
Affiliation(s)
- Sana Yaqoob
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, People’s Republic of China
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Farooq-Ahmad Khan
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, People’s Republic of China
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Nimra Tanveer
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Shujaat Ali
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Abdul Hameed
- Department of Chemistry, University of Sahiwal, Sahiwal, Punjab, Pakistan
| | - Hesham El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Yan Wang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, People’s Republic of China
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Sindh, Pakistan
| |
Collapse
|
3
|
Bookout T, Shideler S, Cooper E, Goff K, Headley JV, Gieg LM, Lewenza S. Construction of Whole Cell Bacterial Biosensors as an Alternative Environmental Monitoring Technology to Detect Naphthenic Acids in Oil Sands Process-Affected Water. ACS Synth Biol 2024; 13:3197-3211. [PMID: 39312753 PMCID: PMC11495318 DOI: 10.1021/acssynbio.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
After extraction of bitumen from oil sands deposits, the oil sand process-affected water (OSPW) is stored in tailings ponds. Naphthenic acids (NA) in tailings ponds have been identified as the primary contributor to toxicity to aquatic life. As an alternative to other analytical methods, here we identify bacterial genes induced after growth in naphthenic acids and use synthetic biology approaches to construct a panel of candidate biosensors for NA detection in water. The main promoters of interest were the atuAR promoters from a naphthenic acid degradation operon and upstream TetR regulator, the marR operon which includes a MarR regulator and downstream naphthenic acid resistance genes, and a hypothetical gene with a possible role in fatty acid biology. Promoters were printed and cloned as transcriptional lux reporter plasmids that were introduced into a tailings pond-derived Pseudomonas species. All candidate biosensor strains were tested for transcriptional responses to naphthenic acid mixtures and individual compounds. The three priority promoters respond in a dose-dependent manner to simple, acyclic, and complex NA mixtures, and each promoter has unique NA specificities. The limits of NA detection from the various NA mixtures ranged between 1.5 and 15 mg/L. The atuA and marR promoters also detected NA in small volumes of OSPW samples and were induced by extracts of the panel of OSPW samples. While biosensors have been constructed for other hydrocarbons, here we describe a biosensor approach that could be employed in environmental monitoring of naphthenic acids in oil sands mining wastewater.
Collapse
Affiliation(s)
- Tyson Bookout
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Steve Shideler
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Evan Cooper
- Faculty
of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Kira Goff
- Faculty
of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - John V. Headley
- Environment
and Climate Change Canada, National Hydrology Research Centre, Saskatoon, Saskatchewan, Canada S7N 3H5
| | - Lisa M. Gieg
- Biological
Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Shawn Lewenza
- Faculty
of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
4
|
Li S, Xiao Q, Sun J, Li Z, Zhang M, Tian Y, Zhang Z, Dong H, Jiao Y, Xu F, Zhang P. A new chemical derivatization reagent sulfonyl piperazinyl for the quantification of fatty acids using LC-MS/MS. Talanta 2024; 277:126378. [PMID: 38870757 DOI: 10.1016/j.talanta.2024.126378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
In our previous study, a chemical derivatization reagent named 5-(dimethylamino) naphthalene-1-sulfonyl piperazine (Dns-PP) was developed to enhance the chromatographic retention and the mass spectrometric response of free fatty acids (FFAs) in reversed-phase liquid chromatography coupled with electrospray ionization-mass spectrometry (RPLC-ESI-MS). However, Dns-PP exhibited strong preferences for long-chain FFAs, with limited improvement for short- or medium-chain FFAs. In this study, a new series of labeling reagents targeting FFAs were designed, synthesized, and evaluated. Among these reagents, Tmt-PP (N2, N2, N4, N4-tetramethyl-6-(4-(piperazin-1-ylsulfonyl) phenyl)-1,3,5-triazine-2,4-diamine) exhibited the best MS response and was selected for further evaluations. We compared Tmt-PP with Dns-PP and four commonly used carboxyl labeling reagents from existing studies, demonstrating the advantages of Tmt-PP. Further comparisons between Tmt-PP and Dns-PP in measuring FFAs from biological samples revealed that Tmt-PP labeling enhanced the MS response for about 80 % (30/38) of the measured FFAs, particularly for short- and medium-chain FFAs. Moreover, Tmt-PP labeling significantly improved the chromatographic retention of short-chain FFAs. To ensure accurate quantification, we developed a stable isotope-labeled Tmt-PP (i.e., d12-Tmt-PP) to react with chemical standards and serve as one-to-one internal standards (IS). The method was validated for accuracy, precision, sensitivity, linearity, stability, extraction efficiency, as well as matrix effect. Overall, this study introduced a new chemical derivatization reagent Tmt-PP (d12-Tmt-PP), providing a sensitive and accurate option for quantifying FFAs in biological samples.
Collapse
Affiliation(s)
- Siqi Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Qinwen Xiao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jiarui Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhaoqian Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Mengting Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yu Jiao
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
5
|
Yuan QS, Gao Y, Wang L, Wang X, Wang L, Ran J, Ou X, Wang Y, Xiao C, Jiang W, Guo L, Zhou T, Huang L. Pathogen-driven Pseudomonas reshaped the phyllosphere microbiome in combination with Pseudostellaria heterophylla foliar disease resistance via the release of volatile organic compounds. ENVIRONMENTAL MICROBIOME 2024; 19:61. [PMID: 39182153 PMCID: PMC11344943 DOI: 10.1186/s40793-024-00603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Continuous monocropping obstacles are common in plants, especially medicinal plants, resulting in disease outbreaks and productivity reductions. Foliar disease, mainly caused by Fusarium oxysporum, results in a severe decrease in the yield of Pseudostellaria heterophylla annually. Determining an effective biomethod to alleviate this disease is urgently needed to improve its productivity and quality. RESULTS This study screened thirty-two keystone bacterial genera induced by pathogens in P. heterophylla rhizosphere soil under continuous monocropping conditions. Pseudomonas, Chryseobacterium, and Flavobacterium, referred to as the beneficial microbiota, were significantly attracted by pathogen infection. The P. palleroniana strain B-BH16-1 can directly inhibit the growth and spore formation of seven primary pathogens of P. heterophylla foliar disease by disrupting fusaric acid production via the emission of volatile organic compounds (VOCs). In addition, strain B-BH16-1 enhances the disease resistance of P. heterophylla by obliterating the pathogen and assembling beneficial microbiota. CONCLUSION Pathogen-induced Pseudomonas reshaped phyllosphere microbial communities via direct antagonism of pathogens and indirect disruption of the pathogen virulence factor biosynthesis to enhance disease suppression and improve yields. These results show that inhibiting pathogen virulence biosynthesis to reshape the plant microbial community using disease-induing probiotics will be an innovative strategy for managing plant disease, especially under continuous monoculture conditions.
Collapse
Affiliation(s)
- Qing-Song Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Yanping Gao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lu Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaoai Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lingling Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jiayue Ran
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaohong Ou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yanhong Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Weike Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lanping Guo
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Luqi Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
6
|
Li B, He X, Guo S, Li D, Wang Y, Meng X, Dai P, Hu T, Cao K, Wang S. Characterization of Bacillus amyloliquefaciens BA-4 and its biocontrol potential against Fusarium-related apple replant disease. FRONTIERS IN PLANT SCIENCE 2024; 15:1370440. [PMID: 38708392 PMCID: PMC11067707 DOI: 10.3389/fpls.2024.1370440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Apple replant disease (ARD), caused by Fusarium pathogens, is a formidable threat to the renewal of apple varieties in China, necessitating the development of effective and sustainable control strategies. In this study, the bacterial strain BA-4 was isolated from the rhizosphere soil of healthy apple trees in a replanted orchard, demonstrating a broad-spectrum antifungal activity against five crucial apple fungal pathogens. Based on its morphology, physiological and biochemical traits, utilization of carbon sources, and Gram stain, strain BA-4 was tentatively identified as Bacillus amyloliquefaciens. Phylogenetic analysis using 16S rDNA and gyrB genes conclusively identified BA-4 as B. amyloliquefaciens. In-depth investigations into B. amyloliquefaciens BA-4 revealed that the strain possesses the capacity to could secrete cell wall degrading enzymes (protease and cellulase), produce molecules analogous to indole-3-acetic acid (IAA) and siderophores, and solubilize phosphorus and potassium. The diverse attributes observed in B. amyloliquefaciens BA-4 underscore its potential as a versatile microorganism with multifaceted benefits for both plant well-being and soil fertility. The extracellular metabolites produced by BA-4 displayed a robust inhibitory effect on Fusarium hyphal growth and spore germination, inducing irregular swelling, atrophy, and abnormal branching of fungal hyphae. In greenhouse experiments, BA-4 markedly reduced the disease index of Fusarium-related ARD, exhibiting protective and therapeutic efficiencies exceeding 80% and 50%, respectively. Moreover, BA-4 demonstrated plant-promoting abilities on both bean and Malus robusta Rehd. (MR) seedlings, leading to increased plant height and primary root length. Field experiments further validated the biocontrol effectiveness of BA-4, demonstrating its ability to mitigate ARD symptoms in MR seedlings with a notable 33.34% reduction in mortality rate and improved biomass. Additionally, BA-4 demonstrates robust and stable colonization capabilities in apple rhizosphere soil, particularly within the 10-20 cm soil layer, which indicates that it has long-term effectiveness potential in field conditions. Overall, B. amyloliquefaciens BA-4 emerges as a promising biocontrol agent with broad-spectrum antagonistic capabilities, positive effects on plant growth, and strong colonization abilities for the sustainable management of ARD in apple cultivation.
Collapse
Affiliation(s)
- Bo Li
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Institute of Agricultural Information and Economics, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xiaoxing He
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Saiya Guo
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Dongxu Li
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Yanan Wang
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Xianglong Meng
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Pengbo Dai
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Tongle Hu
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Keqiang Cao
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Shutong Wang
- College of Plant Protection, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Singh P, Kumar A, Sharma P, Chugh S, Kumar A, Sharma N, Gupta S, Singh M, Kidwai S, Sankar J, Taneja N, Kumar Y, Dhiman R, Mahajan D, Singh R. Identification and optimization of pyridine carboxamide-based scaffold as a drug lead for Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68:e0076623. [PMID: 38193667 PMCID: PMC10848774 DOI: 10.1128/aac.00766-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
New drugs with novel mechanisms of action are urgently needed to tackle the issue of drug-resistant tuberculosis. Here, we have performed phenotypic screening using the Pathogen Box library obtained from the Medicines for Malaria Venture against Mycobacterium tuberculosis in vitro. We have identified a pyridine carboxamide derivative, MMV687254, as a promising hit. This molecule is specifically active against M. tuberculosis and Mycobacterium bovis Bacillus Calmette-Guérin (M. bovis BCG) but inactive against Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Escherichia coli pathogens. We demonstrate that MMV687254 inhibits M. tuberculosis growth in liquid cultures in a bacteriostatic manner. Surprisingly, MMV687254 was as active as isoniazid in macrophages and inhibited M. tuberculosis growth in a bactericidal manner. Mechanistic studies revealed that MMV687254 is a prodrug and that its anti-mycobacterial activity requires AmiC-dependent hydrolysis. We further demonstrate that MMV687254 inhibits M. tuberculosis growth in macrophages by inducing autophagy. In the present study, we have also carried out a detailed structure-activity relationship study and identified a promising novel lead candidate. The identified novel series of compounds also showed activity against drug-resistant M. bovis BCG and M. tuberculosis clinical strains. Finally, we demonstrate that in contrast to MMV687254, the lead molecule was able to inhibit M. tuberculosis growth in a chronic mouse model of infection. Taken together, we have identified a novel lead molecule with a dual mechanism of action that can be further optimized to design more potent anti-tubercular agents.
Collapse
Affiliation(s)
- Padam Singh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Arun Kumar
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Pankaj Sharma
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Saurabh Chugh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ashish Kumar
- Department of Life Science, Laboratory of Mycobacterial Immunology, National Institute of Technology, Rourkela, India
| | - Nidhi Sharma
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sonu Gupta
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manisha Singh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Saqib Kidwai
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Jishnu Sankar
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Neha Taneja
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Yashwant Kumar
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Rohan Dhiman
- Department of Life Science, Laboratory of Mycobacterial Immunology, National Institute of Technology, Rourkela, India
| | - Dinesh Mahajan
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ramandeep Singh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
8
|
Vinacour M, Moiana M, Forné I, Jung K, Bertea M, Calero Valdayo PM, Nikel PI, Imhof A, Palumbo MC, Fernández Do Porto D, Ruiz JA. Genetic dissection of the degradation pathways for the mycotoxin fusaric acid in Burkholderia ambifaria T16. Appl Environ Microbiol 2023; 89:e0063023. [PMID: 38054732 PMCID: PMC10734416 DOI: 10.1128/aem.00630-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/25/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Fusaric acid (FA) is an important virulence factor produced by several Fusarium species. These fungi are responsible for wilt and rot diseases in a diverse range of crops. FA is toxic for animals, humans and soil-borne microorganisms. This mycotoxin reduces the survival and competition abilities of bacterial species able to antagonize Fusarium spp., due to its negative effects on viability and the production of antibiotics effective against these fungi. FA biodegradation is not a common characteristic among bacteria, and the determinants of FA catabolism have not been identified so far in any microorganism. In this study, we identified genes, enzymes, and metabolic pathways involved in the degradation of FA in the soil bacterium Burkholderia ambifaria T16. Our results provide insights into the catabolism of a pyridine-derivative involved in plant pathogenesis by a rhizosphere bacterium.
Collapse
Affiliation(s)
- Matias Vinacour
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauro Moiana
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ignasi Forné
- Protein Analysis Unit, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Faculty Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Micaela Bertea
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia M. Calero Valdayo
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pablo I. Nikel
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Miranda C. Palumbo
- Instituto de Cálculo (IC), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dario Fernández Do Porto
- Instituto de Cálculo (IC), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena A. Ruiz
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Faculty Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Mazucato VDS, Vieira PC. Exploring the chemical diversity of phytopathogenic fungi infecting edible fruits. Nat Prod Res 2023; 37:3947-3955. [PMID: 36597649 DOI: 10.1080/14786419.2022.2163482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023]
Abstract
Two fungi, Fusarium guttiforme and Colletotrichum horii, were cultured under different conditions to obtain fourteen compounds. The axenic cultures of F. guttiforme and C. horii in potato dextrose broth (PDB) medium yielded fusaric acid (1), 9,10-dehydrofusaric acid (2), and tyrosol, whereas their co-cultivation produced fusarinol (5), a fusaric acid complex with magnesium (3), 9,10-dehydrofusaric acid complex with magnesium (4), and 5-butyl-5-(hydroxymethyl) dihydrofuranone (9). Upon changing the medium from PDB to Czapek, different compounds (uracil, p-hydroxy acetophenone, and cyclo(L-Leu-L-Pro) were obtained. Fusaric acid (1) was biotransformed into fusarinol (5) by C. horii, suggesting a detoxification process, and three other compounds were obtained: 7-hydroxyfusarinol (7), 9,10-dehydrofusarinol (6), and fusarinyl acetate (8). Epigenetic modulation of suberohydroxamic acid against F. guttiforme afforded gibepyrone B (10). These compounds were subjected to a papain inhibition enzymatic assay; the highest inhibitory activity was displayed by the two magnesium complexes, at 56 and 54% inhibition, respectively.
Collapse
Affiliation(s)
- Vitor de S Mazucato
- Departament of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paulo C Vieira
- Departament of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Potential of Burkholderia sp. IMCC1007 as a biodetoxification agent in mycotoxin biotransformation evaluated by mass spectrometry and phytotoxicity analysis. World J Microbiol Biotechnol 2023; 39:101. [PMID: 36792836 DOI: 10.1007/s11274-023-03544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Microbial degradation is considered as an attractive method to eliminate exposure to mycotoxin that cause a serious threat in agriculture global industry and severe human health problems. Compared with other more prominent mycotoxin compounds, fusaric acid (FA) biodegradation has not been widely investigated. In this study, a fusaric acid-degrading bacterium Burkholderia sp. IMCC1007 was identified by 16 S rRNA gene sequencing and its detoxification characteristics were evaluated. This strain able to utilize FA as sole energy and carbon source with growth rate (µ) of 0.18 h- 1. Approximately 93% from the initial substrate FA concentration was almost degraded to the residual about 4.87 mg L- 1 after 12 h of incubation. The optimal degradation conditions for pH and temperature were recorded at 6.0 with 30 °C respectively. An efficient FA degradation of strain IMCC1007 suggested its potential significance to detoxification development. Accroding to LC-MS/Q-TOF analysis, FA was bio-transformed to 4-hydroxybenzoic acid (C7H6O3) and other possible metabolites. Plant treated with detoxified FA products exhibited reduction of wilting index, mitigating against FA phytoxicity effect on plant growth and photosynthesis activity. Phytotoxicity bioassay suggested that degradation product of IMCC1007 was not a potent harmful compound towards plants as compared to the parent compound, FA. As a conslusion, our study provides a new insight into the practical application of biodetoxifcation agent in controlling mycotoxin contamination.
Collapse
|
11
|
Research Progress on Small Molecular Inhibitors of the Type 3 Secretion System. Molecules 2022; 27:molecules27238348. [PMID: 36500441 PMCID: PMC9740592 DOI: 10.3390/molecules27238348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
The overuse of antibiotics has led to severe bacterial drug resistance. Blocking pathogen virulence devices is a highly effective approach to combating bacterial resistance worldwide. Type three secretion systems (T3SSs) are significant virulence factors in Gram-negative pathogens. Inhibition of these systems can effectively weaken infection whilst having no significant effect on bacterial growth. Therefore, T3SS inhibitors may be a powerful weapon against resistance in Gram-negative bacteria, and there has been increasing interest in the research and development of T3SS inhibitors. This review outlines several reported small-molecule inhibitors of the T3SS, covering those of synthetic and natural origin, including their sources, structures, and mechanisms of action.
Collapse
|
12
|
Din ARJM, Shadan NH, Rosli MA, Musa NF, Othman NZ. Potential of Burkholderia sp. IMCC1007 as a biodetoxification agent in mycotoxin biotransformation evaluated by mass spectrometry and phytotoxicity analysis.. [DOI: 10.21203/rs.3.rs-2149358/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Microbial degradation is considered as an attractive method to eliminate exposure to mycotoxin that cause a serious threat in agriculture global industry and severe human health problems. Compared with other more prominent mycotoxin compounds, fusaric acid (FA) biodegradation has not been widely investigated. In this study, a fusaric acid-degrading bacterium Burkholderia sp. IMCC1007 was identified by 16S rRNA gene sequencing and its detoxification characteristics were evaluated. This strain able to utilize FA as sole energy and carbon source with growth rate (µ) of 0.18 h− 1. Approximately 93% from the initial substrate FA concentration was almost degraded to the residual about 4.87 mg L− 1 after 12 h of incubation. The optimal degradation conditions for pH and temperature were recorded at 6.0 with 30°C respectively. An efficient FA degradation of strain IMCC1007 suggested its potential significance to detoxification development. Accroding to LC-MS/Q-TOF analysis, FA was bio-transformed to 4-hydroxybenzoic acid (C7H6O3) and other possible metabolites. Plant treated with detoxified FA products exhibited reduction of wilting index, mitigating against FA phytoxicity effect on plant growth and photosynthesis activity. Phytotoxicity bioassay suggested that degradation product of IMCC1007 was not a potent harmful compound towards plants as compared to the parent compound, FA. As a conslusion, our study provides a new insight into the practical application of biodetoxifcation agent in controlling mycotoxin contamination.
Collapse
|
13
|
Hussain S, Ouyang P, Zhu Y, Khalique A, He C, Liang X, Shu G, Yin L. Type 3 secretion system 1 of Salmonella typhimurium and its inhibitors: a novel strategy to combat salmonellosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34154-34166. [PMID: 33966165 DOI: 10.1007/s11356-021-13986-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Unsuccessful vaccination against Salmonella due to a large number of serovars, and antibiotic resistance, necessitates the development of novel therapeutics to treat salmonellosis. The development of anti-virulence agents against multi-drug-resistant bacteria is a novel strategy because of its non-bacterial feature. Hence, a thorough study of the type three secretion system (T3SS) of Salmonella would help us better understand its role in bacterial pathogenesis and development of anti-virulence agents. However, T3SS can be inhibited by different chemicals at different stages of infection and sequenced delivery of effectors can be blocked to restrict the progression of disease. This review highlights the role of T3SS-1 in the internalization, survival, and replication of Salmonella within the intestinal epithelium and T3SS inhibitors. We concluded that the better we understand the structures and functions of T3SS, the more we have chances to develop anti-virulence agents. Furthermore, greater insights into the T3SS inhibitors of Salmonella would help in the mitigation of the antibiotic resistance problem and would lead us to the era of new therapeutics against salmonellosis.
Collapse
Affiliation(s)
- Sajjad Hussain
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Yingkun Zhu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Abdul Khalique
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China.
| |
Collapse
|
14
|
Deletion of Rv2571c confers resistance to arylamide compounds in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:AAC.02334-20. [PMID: 33619059 PMCID: PMC8092897 DOI: 10.1128/aac.02334-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is an urgent global health problem requiring new drugs, new drug targets and an increased understanding of antibiotic resistance. We have determined the mode of resistance to a series of arylamide compounds in M. tuberculosis We isolated M. tuberculosis resistant mutants to two arylamide compounds which are inhibitory to growth under host-relevant conditions (butyrate as a sole carbon source). Thirteen mutants were characterized, and all had mutations in Rv2571c; mutations included a premature stop codon and frameshifts as well as non-synonymous polymorphisms. We isolated a further ten strains with mutations in Rv2571c with resistance. Complementation with a wild-type copy of Rv2571c restored arylamide sensitivity. Over-expression of Rv2571c was toxic in both wild-type and mutant backgrounds. We constructed M. tuberculosis strains with an unmarked deletion of the entire Rv2571c gene by homologous recombination and confirmed that these were resistant to the arylamide series. Rv2571c is a member of the aromatic amino acid transport family and has a fusaric acid resistance domain which is associated with compound transport. Since loss or inactivation of Rv2571c leads to resistance, we propose that Rv2571c is involved in the import of arylamide compounds.
Collapse
|
15
|
Grund ME, Choi SJ, McNitt DH, Barbier M, Hu G, LaSala PR, Cote CK, Berisio R, Lukomski S. Burkholderia collagen-like protein 8, Bucl8, is a unique outer membrane component of a putative tetrapartite efflux pump in Burkholderia pseudomallei and Burkholderia mallei. PLoS One 2020; 15:e0242593. [PMID: 33227031 PMCID: PMC7682875 DOI: 10.1371/journal.pone.0242593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
Bacterial efflux pumps are an important pathogenicity trait because they extrude a variety of xenobiotics. Our laboratory previously identified in silico Burkholderia collagen-like protein 8 (Bucl8) in the hazardous pathogens Burkholderia pseudomallei and Burkholderia mallei. We hypothesize that Bucl8, which contains two predicted tandem outer membrane efflux pump domains, is a component of a putative efflux pump. Unique to Bucl8, as compared to other outer membrane proteins, is the presence of an extended extracellular region containing a collagen-like (CL) domain and a non-collagenous C-terminus (Ct). Molecular modeling and circular dichroism spectroscopy with a recombinant protein, corresponding to this extracellular CL-Ct portion of Bucl8, demonstrated that it adopts a collagen triple helix, whereas functional assays screening for Bucl8 ligands identified binding to fibrinogen. Bioinformatic analysis of the bucl8 gene locus revealed it resembles a classical efflux-pump operon. The bucl8 gene is co-localized with downstream fusCDE genes encoding fusaric acid (FA) resistance, and with an upstream gene, designated as fusR, encoding a LysR-type transcriptional regulator. Using reverse transcriptase (RT)-qPCR, we defined the boundaries and transcriptional organization of the fusR-bucl8-fusCDE operon. We found exogenous FA induced bucl8 transcription over 80-fold in B. pseudomallei, while deletion of the entire bucl8 locus decreased the minimum inhibitory concentration of FA 4-fold in its isogenic mutant. We furthermore showed that the putative Bucl8-associated pump expressed in the heterologous Escherichia coli host confers FA resistance. On the contrary, the Bucl8-associated pump did not confer resistance to a panel of clinically-relevant antimicrobials in Burkholderia and E. coli. We finally demonstrated that deletion of the bucl8-locus drastically affects the growth of the mutant in L-broth. We determined that Bucl8 is a component of a novel tetrapartite efflux pump, which confers FA resistance, fibrinogen binding, and optimal growth.
Collapse
Affiliation(s)
- Megan E. Grund
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
| | - Soo J. Choi
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
| | - Dudley H. McNitt
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
| | - Mariette Barbier
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
| | - Gangqing Hu
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
- Cancer Center, West Virginia University, Morgantown, WV, United States of
America
- Bioinformatics Core, West Virginia University, Morgantown, WV, United
States of America
| | - P. Rocco LaSala
- Department of Pathology, West Virginia University, Morgantown, WV, United
States of America
| | - Christopher K. Cote
- Bacteriology Division, The United States Army Medical Research Institute
of Infectious Diseases (USAMRIID), Frederick, MD, United States of
America
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council,
Naples, Italy
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
- Cancer Center, West Virginia University, Morgantown, WV, United States of
America
| |
Collapse
|
16
|
Smith EA, Newton ILG. Genomic Signatures of Honey Bee Association in an Acetic Acid Symbiont. Genome Biol Evol 2020; 12:1882-1894. [PMID: 32870981 PMCID: PMC7664317 DOI: 10.1093/gbe/evaa183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Recent declines in the health of the honey bee have startled researchers and lay people alike as honey bees are agriculture's most important pollinator. Honey bees are important pollinators of many major crops and add billions of dollars annually to the US economy through their services. One factor that may influence colony health is the microbial community. Indeed, the honey bee worker digestive tract harbors a characteristic community of bee-specific microbes, and the composition of this community is known to impact honey bee health. However, the honey bee is a superorganism, a colony of eusocial insects with overlapping generations where nestmates cooperate, building a hive, gathering and storing food, and raising brood. In contrast to what is known regarding the honey bee worker gut microbiome, less is known of the microbes associated with developing brood, with food stores, and with the rest of the built hive environment. More recently, the microbe Bombella apis was identified as associated with nectar, with developing larvae, and with honey bee queens. This bacterium is related to flower-associated microbes such as Saccharibacter floricola and other species in the genus Saccharibacter, and initial phylogenetic analyses placed it as sister to these environmental bacteria. Here, we used comparative genomics of multiple honey bee-associated strains and the nectar-associated Saccharibacter to identify genomic changes that may be associated with the ecological transition to honey bee association. We identified several genomic differences in the honey bee-associated strains, including a complete CRISPR/Cas system. Many of the changes we note here are predicted to confer upon Bombella the ability to survive in royal jelly and defend themselves against mobile elements, including phages. Our results are a first step toward identifying potential function of this microbe in the honey bee superorganism.
Collapse
Affiliation(s)
- Eric A Smith
- Department of Biology, Indiana University, Bloomington
| | | |
Collapse
|
17
|
Silva TL, Toffano L, Fernandes JB, das Graças Fernandes da Silva MF, de Sousa LRF, Vieira PC. Mycotoxins from Fusarium proliferatum: new inhibitors of papain-like cysteine proteases. Braz J Microbiol 2020; 51:1169-1175. [PMID: 32189177 PMCID: PMC7455666 DOI: 10.1007/s42770-020-00256-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/06/2020] [Indexed: 12/31/2022] Open
Abstract
Papain-like cysteine proteases (PLCPs) in plants are essential to prevent phytopathogen invasion. In order to search for cysteine protease inhibitors and to investigate compounds that could be associated to pineapple Fusarium disease, a chemistry investigation was performed on Fusarium proliferatum isolated from Ananas comosus (pineapple) and cultivated in Czapek medium. From F. proliferatum extracts, nine secondary metabolites were isolated and characterized by nuclear magnetic resonance spectroscopy and mass spectrometry experiments: beauvericin (1), fusaric acid (2), N-ethyl-3-phenylacetamide (3), N-acetyltryptamine (4), cyclo(L-Val-L-Pro) cyclodipeptide (5), cyclo(L-Leu-L-Pro) cyclodipeptide (6), cyclo(L-Leu-L-Pro) diketopiperazine (7), 2,4-dihydroxypyrimidine (8), and 1H-indole-3-carbaldehyde (9). Compounds 1, 3, and 6 showed significant inhibition of papain, with IC50 values of 25.3 ± 1.9, 39.4 ± 2.5, and 7.4 ± 0.5 μM, respectively. Compound 1 also showed significant inhibition against human cathepsins V and B with IC50 of 46.0 ± 3.0 and 6.8 ± 0.7 μM, respectively. The inhibition of papain by mycotoxins (fusaric acid and beauvericin) may indicate a mechanism of Fusarium in the roles of infection process.
Collapse
Affiliation(s)
- Taynara Lopes Silva
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Leonardo Toffano
- Department of Agronomy, Brasil University, Campus Descalvado, Descalvado, SP, 13565-905, Brazil
| | - João Batista Fernandes
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | | | - Paulo Cezar Vieira
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
18
|
Complete Genome Sequence of Pseudomonas aeruginosa CMC-115, a Clinical Strain from an Acute Ventilator-Associated Pneumonia Patient. Microbiol Resour Announc 2020; 9:9/30/e00595-20. [PMID: 32703835 PMCID: PMC7378034 DOI: 10.1128/mra.00595-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We report the complete genome of clinical strain Pseudomonas aeruginosa CMC-115, which was isolated from an acute ventilator-associated pneumonia patient. Illumina sequencing reads were assembled using Geneious to yield a 6,375,262-bp circular chromosome that exhibited an unusual ferrichrome receptor in the pyoverdine synthesis locus and the absence of type 3 secretion system genes. We report the complete genome of clinical strain Pseudomonas aeruginosa CMC-115, which was isolated from an acute ventilator-associated pneumonia patient. Illumina sequencing reads were assembled using Geneious to yield a 6,375,262-bp circular chromosome that exhibited an unusual ferrichrome receptor in the pyoverdine synthesis locus and the absence of type 3 secretion system genes.
Collapse
|
19
|
Pendergrass HA, May AE. Natural Product Type III Secretion System Inhibitors. Antibiotics (Basel) 2019; 8:antibiotics8040162. [PMID: 31554164 PMCID: PMC6963908 DOI: 10.3390/antibiotics8040162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/05/2023] Open
Abstract
Many known inhibitors of the bacterial type III secretion system (T3SS), a virulence factor used by pathogenic bacteria to infect host cells, are natural products. These compounds, produced by bacteria, fungi, and plants, may have developed as prophylactic treatments for potential attack by bacterial pathogens or as an attempt by symbiotic organisms to protect their hosts. Regardless, better understanding of the structures and mechanisms of action of these compounds may open opportunities for drug development against diseases caused by pathogens utilizing the T3SS. This review will cover selected known natural products of the T3SS and detail what is known of their origin and mechanism of action. These inhibitors highlight nature’s ability to modulate interactions between organisms at a cellular level.
Collapse
Affiliation(s)
- Heather A Pendergrass
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Aaron E May
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
20
|
MarR Family Transcription Factors from Burkholderia Species: Hidden Clues to Control of Virulence-Associated Genes. Microbiol Mol Biol Rev 2018; 83:83/1/e00039-18. [PMID: 30487164 DOI: 10.1128/mmbr.00039-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Species within the genus Burkholderia exhibit remarkable phenotypic diversity. Genomic plasticity, including genome reduction and horizontal gene transfer, has been correlated with virulence traits in several species. However, the conservation of virulence genes in species otherwise considered to have limited potential for infection suggests that phenotypic diversity may not be explained solely on the basis of genetic diversity. Instead, differential organization and control of gene regulatory networks may underlie many phenotypic differences. In this review, we evaluate how regulation of gene expression by members of the multiple antibiotic resistance regulator (MarR) family of transcription factors may contribute to shaping the physiological diversity of Burkholderia species, with a focus on the clinically relevant human pathogens. All Burkholderia species encode a relatively large number of MarR proteins, a feature common to bacteria that must respond to environmental changes such as those associated with host invasion. However, evolution of gene regulatory networks has likely resulted in orthologous transcription factors controlling disparate sets of genes. Adaptation to, and survival in, diverse habitats, including a human or plant host, is key to the success of Burkholderia species as (opportunistic) pathogens, and recent reports suggest that control of virulence-associated genes by MarR proteins features prominently among the survival strategies employed by these species. We suggest that identification of MarR regulons will contribute significantly to clarification of virulence determinants and phenotypic diversity.
Collapse
|
21
|
Al-Sadi AM, Kazerooni EA. Illumina-MiSeq analysis of fungi in acid lime roots reveals dominance of Fusarium and variation in fungal taxa. Sci Rep 2018; 8:17388. [PMID: 30478417 PMCID: PMC6255777 DOI: 10.1038/s41598-018-35404-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/05/2018] [Indexed: 11/08/2022] Open
Abstract
A study was conducted to analyze fungal diversity in the roots of acid lime (Citrus aurantifolia) collected from Oman, a semi-arid country located in the South Eastern part of the Arabian Peninsula. MiSeq analysis showed the Ascomycota and Sordariomycetes were the most abundant phylum and class in acid lime roots, respectively. Glomeromycota, Basidiomycota and Microsporidia were the other fungal phyla, while Glomeromycetes and some other classes belonging to Ascomycota and Basidiomycota were detected at lower frequencies. The genus Fusarium was the most abundant in all samples, making up 46 to 95% of the total reads. Some fungal genera of Arbuscular mycorrhizae and nematophagous fungi were detected in some of the acid lime roots. Analysis of the level of fungal diversity showed that no significant differences exist among groups of root samples (from different locations) in their Chao richness and Shannon diversity levels (P < 0.05). Principle component analysis of fungal communities significantly separated samples according to their locations. This is the first study to evaluate fungal diversity in acid lime roots using high throughput sequencing analysis. The study reveals the presence of various fungal taxa in the roots, dominated by Fusarium species and including some mycorrhizae and nematophagous fungi.
Collapse
Affiliation(s)
- Abdullah M Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Oman, PO Box 34, Alkhoud, 123, Oman.
| | - Elham A Kazerooni
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Oman, PO Box 34, Alkhoud, 123, Oman
| |
Collapse
|
22
|
Matteoli FP, Passarelli-Araujo H, Reis RJA, da Rocha LO, de Souza EM, Aravind L, Olivares FL, Venancio TM. Genome sequencing and assessment of plant growth-promoting properties of a Serratia marcescens strain isolated from vermicompost. BMC Genomics 2018; 19:750. [PMID: 30326830 PMCID: PMC6192313 DOI: 10.1186/s12864-018-5130-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/27/2018] [Indexed: 01/11/2023] Open
Abstract
Background Plant-bacteria associations have been extensively studied for their potential in increasing crop productivity in a sustainable manner. Serratia marcescens is a species of Enterobacteriaceae found in a wide range of environments, including soil. Results Here we describe the genome sequencing and assessment of plant growth-promoting abilities of S. marcescens UENF-22GI, a strain isolated from mature cattle manure vermicompost. In vitro, S. marcescens UENF-22GI is able to solubilize P and Zn, to produce indole compounds (likely IAA), to colonize hyphae and counter the growth of two phytopathogenic fungi. Inoculation of maize with this strain remarkably increased seedling growth and biomass under greenhouse conditions. The S. marcescens UENF-22GI genome has 5 Mb, assembled in 17 scaffolds comprising 4662 genes (4528 are protein-coding). No plasmids were identified. S. marcescens UENF-22GI is phylogenetically placed within a clade comprised almost exclusively of non-clinical strains. We identified genes and operons that are likely responsible for the interesting plant-growth promoting features that were experimentally described. The S. marcescens UENF-22GI genome harbors a horizontally-transferred genomic island involved in antibiotic production, antibiotic resistance, and anti-phage defense via a novel ADP-ribosyltransferase-like protein and possible modification of DNA by a deazapurine base, which likely contributes to its competitiveness against other bacteria. Conclusions Collectively, our results suggest that S. marcescens UENF-22GI is a strong candidate to be used in the enrichment of substrates for plant growth promotion or as part of bioinoculants for agriculture. Electronic supplementary material The online version of this article (10.1186/s12864-018-5130-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Filipe P Matteoli
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Hemanoel Passarelli-Araujo
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Régis Josué A Reis
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Letícia O da Rocha
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Emanuel M de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Fabio L Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil.
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil.
| |
Collapse
|