1
|
Salih E, Mgbeahuruike EE, Prévost-Monteiro S, Sipari N, Väre H, Novak B, Julkunen-Tiitto R, Fyhrqvist P. Polyphenols and Phenolic Glucosides in Antibacterial Twig Extracts of Naturally Occurring Salix myrsinifolia (Salisb.), S. phylicifolia (L.) and S. starkeana (Willd.) and the Cultivated Hybrid S. x pendulina (Wender.). Pharmaceutics 2024; 16:916. [PMID: 39065613 PMCID: PMC11280161 DOI: 10.3390/pharmaceutics16070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Salix species occurring in Finland have not been well studied for their antimicrobial potential, despite their frequent use for lung and stomach problems in traditional medicine. Thus, twig extracts of three species of Salix that are found naturally in Finland and one cultivated species were screened for their antimicrobial properties against human pathogenic bacteria. S. starkeana and S. x pendulina were screened for antibacterial effects for the first time. (2) Methods: An agar diffusion and a microplate method were used for the screenings. Time-kill effects were measured using a plate-count and a microplate method. A DPPH-method using a qualitative TLC-analysis was used to detect antioxidant compounds in antimicrobial extracts. Metabolites from a S. myrsinifolia extract showing good antibacterial effects were identified using UPLC/QTOF-MS. (3) Results: A methanol extract of S. starkeana was particularly active against B. cereus (MIC 625 µg/mL), and a methanol extract of S. myrsinifolia showed good activity against S. aureus and B. cereus (MIC 1250 µg/mL) and showed bactericidal effects during a 24 h incubation of B. cereus. Moreover, a decoction of S. myrsinifolia resulted in good growth inhibition against P. aeruginosa. Our UPLC/QTOF-MS results indicated that proanthocyanidins (PAs), and especially the dimer procyanidin B1 (m/z 577) and other procyanidin derivatives, including highly polymerized proanthocyanidins, were abundant in S. myrsinifolia methanol extracts. Procyanidin B1 and its monomer catechin, as well as taxifolin and p-hydroxycinnamic acid, all present in S. myrsinifolia twigs, effectively inhibited B. cereus (MIC 250 µg/mL). (4) Conclusions: This study indicates that Finnish Salix species contain an abundance of antibacterial condensed tannins, phenolic acids and other polyphenols that deserve further research for the antibacterial mechanisms of action.
Collapse
Affiliation(s)
- Enass Salih
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland; (E.E.M.); (P.F.)
| | - Eunice Ego Mgbeahuruike
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland; (E.E.M.); (P.F.)
| | | | - Nina Sipari
- Viikki Metabolomics Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00100 Helsinki, Finland;
| | - Henry Väre
- Botanical Museum, Finnish Museum of Natural History, University of Helsinki, 00100 Helsinki, Finland;
| | - Brigita Novak
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia;
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, Faculty of Science and Forestry, University of Eastern Finland, 80100 Joensuu, Finland;
| | - Pia Fyhrqvist
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland; (E.E.M.); (P.F.)
| |
Collapse
|
2
|
Köhler A, Förster N, Zander M, Ulrichs C. Inter- and intraspecific diversity of Salix bark phenolic profiles - A resource for the pharmaceutical industry. Fitoterapia 2023; 170:105660. [PMID: 37648031 DOI: 10.1016/j.fitote.2023.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Due to their content of phenolic compounds, willow bark preparations are used as an herbal remedy. The large diversity of phenolic secondary metabolites in Salix still provides a resource for the identification of bioactive compounds in particular species, including species not yet in focus from a phytopharmaceutical perspective. The present study describes the bark phenolic profile of 13 Salix species analyzed by HPLC-MS: Salix alba, Salix babylonica, Salix daphnoides, Salix fragilis, Salix hastata, Salix myrsinifolia, Salix pentandra, Salix purpurea, Salix repens (including subspecies S. repens ssp. arenaria and S. repens ssp. repens), Salix rosmarinifolia, Salix sachalinensis, Salix triandra and Salix viminalis. The analyzed profiles comprised the chemical groups of salicylates, flavonoids, procyanidins, phenolic acid derivatives, and some unclassified phenolics. Particular compounds were detected in species where they have not been previously reported. Apart from interspecific diversity, qualitative variability within species was observed as certain components were detected only in some of the analyzed genotypes. The knowledge on specific phenolic profiles of species and genotypes is the basis for the selection of suitable willow bark material with certain desired bioactive properties. Furthermore, the high inter- and intraspecific variability points out the necessity for product standardization of willow bark raw material.
Collapse
Affiliation(s)
- Angela Köhler
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Division Urban Plant Ecophysiology, Lentzeallee 55/57, Berlin 14195, Germany.
| | - Nadja Förster
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Division Urban Plant Ecophysiology, Lentzeallee 55/57, Berlin 14195, Germany.
| | - Matthias Zander
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Division Urban Plant Ecophysiology, Lentzeallee 55/57, Berlin 14195, Germany.
| | - Christian Ulrichs
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Division Urban Plant Ecophysiology, Lentzeallee 55/57, Berlin 14195, Germany.
| |
Collapse
|
3
|
Vanhakylä S, Salminen JP. Seasonal Variation in Plant Polyphenols and Related Bioactivities across Three Years in Ten Tree Species as Visualized by Mass Spectrometric Fingerprint Mapping. Molecules 2023; 28:6093. [PMID: 37630346 PMCID: PMC10458088 DOI: 10.3390/molecules28166093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/27/2023] Open
Abstract
The currently changing climates and environments place plants under many types of stresses that affect both their survival and levels of chemical defenses. The gradual induction of defenses in stressed plant populations could be monitored on a yearly basis unless a seasonal and yearly variation in natural defense levels obscures such monitoring schemes. Here, we studied the stability of the species-specific polyphenol composition and content of 10 tree species over three growing seasons using five replicate trees per species. We specifically measured hydrolyzable tannins (galloyl and hexahydroxydiphenoyl derivatives), proanthocyanidins (procyanidins and prodelphinidins), flavonols (kaempferol, quercetin and kaempferol derivatives) and quinic acid derivatives with the group-specific UHPLC-DAD-MS/MS tool, together with two bioactivities, the protein precipitation capacity and oxidative activity. With the help of a fingerprint mapping tool, we found out that species differed a lot in their seasonal and between-year variation in polyphenols and that the variation was also partially specific to compound groups. Especially ellagitannins tended to have declining seasonal patterns while the opposite was true for proanthocyanidins. Some of the species showed minimal variation in all measured variables, while others showed even induced levels of certain polyphenol groups during the 3-year study. For every species, we found either species-specific baseline levels in qualitative and quantitative polyphenol chemistry or the compound groups with the most plasticity in their production. The used tools could thus form a good combination for future studies attempting to monitor the overall changes in polyphenol chemistry due to various biotic or abiotic stress factors in plant populations or in more controlled environments.
Collapse
Affiliation(s)
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland;
| |
Collapse
|
4
|
Sargent RD, McKeough AD. New evidence suggests no sex bias in herbivory or plant defense. Am Nat 2022; 200:435-447. [DOI: 10.1086/720366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Tienaho J, Reshamwala D, Sarjala T, Kilpeläinen P, Liimatainen J, Dou J, Viherä-Aarnio A, Linnakoski R, Marjomäki V, Jyske T. Salix spp. Bark Hot Water Extracts Show Antiviral, Antibacterial, and Antioxidant Activities-The Bioactive Properties of 16 Clones. Front Bioeng Biotechnol 2022; 9:797939. [PMID: 34976988 PMCID: PMC8716786 DOI: 10.3389/fbioe.2021.797939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Earlier studies have shown that the bark of Salix L. species (Salicaceae family) is rich in extractives, such as diverse bioactive phenolic compounds. However, we lack knowledge on the bioactive properties of the bark of willow species and clones adapted to the harsh climate conditions of the cool temperate zone. Therefore, the present study aimed to obtain information on the functional profiles of northern willow clones for the use of value-added bioactive solutions. Of the 16 willow clones studied here, 12 were examples of widely distributed native Finnish willow species, including dark-leaved willow (S. myrsinifolia Salisb.) and tea-leaved willow (S. phylicifolia L.) (3 + 4 clones, respectively) and their natural and artificial hybrids (3 + 2 clones, respectively). The four remaining clones were commercial willow varieties from the Swedish willow breeding program. Hot water extraction of bark under mild conditions was carried out. Bioactivity assays were used to screen antiviral, antibacterial, antifungal, yeasticidal, and antioxidant activities, as well as the total phenolic content of the extracts. Additionally, we introduce a fast and less labor-intensive steam-debarking method for Salix spp. feedstocks. Clonal variation was observed in the antioxidant properties of the bark extracts of the 16 Salix spp. clones. High antiviral activity against a non-enveloped enterovirus, coxsackievirus A9, was found, with no marked differences in efficacy between the native clones. All the clones also showed antibacterial activity against Staphylococcus aureus and Escherichia coli, whereas no antifungal (Aspergillus brasiliensis) or yeasticidal (Candida albicans) efficacy was detected. When grouping the clone extract results into Salix myrsinifolia, Salix phylicifolia, native hybrid, artificial hybrid, and commercial clones, there was a significant difference in the activities between S. phylicifolia clone extracts and commercial clone extracts in the favor of S. phylicifolia in the antibacterial and antioxidant tests. In some antioxidant tests, S. phylicifolia clone extracts were also significantly more active than artificial clone extracts. Additionally, S. myrsinifolia clone extracts showed significantly higher activities in some antioxidant tests than commercial clone extracts and artificial clone extracts. Nevertheless, the bark extracts of native Finnish willow clones showed high bioactivity. The obtained knowledge paves the way towards developing high value-added biochemicals and other functional solutions based on willow biorefinery approaches.
Collapse
Affiliation(s)
- Jenni Tienaho
- Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Tytti Sarjala
- Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Petri Kilpeläinen
- Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jaana Liimatainen
- Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jinze Dou
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Anneli Viherä-Aarnio
- Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Riikka Linnakoski
- Natural Resources, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Tuula Jyske
- Production Systems, Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
6
|
Sobuj N, Nissinen K, Virjamo V, Salonen A, Sivadasan U, Randriamanana T, Ikonen VP, Kilpeläinen A, Julkunen-Tiitto R, Nybakken L, Mehtätalo L, Peltola H. Accumulation of phenolics and growth of dioecious Populus tremula (L.) seedlings over three growing seasons under elevated temperature and UVB radiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:114-122. [PMID: 34034157 DOI: 10.1016/j.plaphy.2021.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Accumulation of secondary metabolites may exhibit developmentally regulated variation in different plant organs. Moreover, prevailing environmental conditions may interact with development-related variations in plant traits. In this study, we examined developmentally regulated variation in phenolic accumulation in the twigs of dioecious Populus tremula (L.) and how the effects of elevated temperature and ultraviolet B (UVB) radiation on growth and phenolics accumulation varied as the plants get older. In an open-field experiment, six female and six male genotypes were exposed to single and combined elevated temperature and UVB radiation treatments for three consecutive growing seasons. The concentrations of low molecular weight phenolics and condensed tannins did not show age-dependent variation in the twigs. In temperature-treated plants, diameter growth rate decreased, and concentration of condensed tannins increased as plants aged; there were no cumulative effects of elevated UVB radiation on growth and phenolic accumulation. Females maintained a higher concentration of low molecular weight phenolics throughout the experimental period; however, growth and phenolic concentration did not vary over time in females and males. Our results suggest that phenolic accumulation in perennial plants may not necessarily always exhibit age-dependent variation and the effects of elevated temperature on growth and phenolic may diminish as plants get older.
Collapse
Affiliation(s)
- Norul Sobuj
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101, Joensuu, Finland.
| | - Katri Nissinen
- School of Forest Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Virpi Virjamo
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101, Joensuu, Finland; School of Forest Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Anneli Salonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Unnikrishnan Sivadasan
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Tendry Randriamanana
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Veli-Pekka Ikonen
- School of Forest Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Antti Kilpeläinen
- School of Forest Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Line Nybakken
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Lauri Mehtätalo
- School of Computing, University of Eastern Finland, 80101, Joensuu, Finland
| | - Heli Peltola
- School of Forest Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| |
Collapse
|
7
|
Pauli ED, Scheel GL, Delaroza F, Rakocevic M, Bruns RE, Scarminio IS. Photodiode array chromatographic-spectrophotometric metabolite quantification for yerba-mate plant sexual dimorphism differentiation. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Cope OL, Kruger EL, Rubert‐Nason KF, Lindroth RL. Chemical defense over decadal scales: Ontogenetic allocation trajectories and consequences for fitness in a foundation tree species. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13425] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Olivia L. Cope
- Department of Integrative Biology University of Wisconsin‐Madison Madison WI USA
| | - Eric L. Kruger
- Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison WI USA
| | | | | |
Collapse
|
9
|
Stark S, Martz F. Gender Dimorphism Does Not Affect Secondary Compound Composition in Juniperus communis After Shoot Cutting in Northern Boreal Forests. FRONTIERS IN PLANT SCIENCE 2018; 9:1910. [PMID: 30622553 PMCID: PMC6308805 DOI: 10.3389/fpls.2018.01910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Due to a difference in plant resource allocation to reproduction, the males of dioecious plants may be more growth-orientated, whereas females may allocate more resources for synthesizing secondary compounds. This mechanism is considered to cause gender-specific differences in the plant responses to the loss of plant biomass. Here, we tested gender dimorphism in the responses of common juniper (Juniperus communis) to shoot cutting in four juniper populations located in northern boreal forests in Finland. We collected shoots from uncut junipers and from junipers subjected to shoot cutting in the previous year, and analyzed them for their shoot growth as well as phenolic and terpenoid concentrations. There were no differences in foliar phenolic or terpenoid concentrations between the males and the females. Shoot cutting increased phenolic but not terpenoid concentrations, similarly, in both males and females. Our study reveals that the nature of gender dimorphism may differ among species and locations, which should be considered in theories on plant gender dimorphism. Given the similar phenolic and terpene concentrations in both genders, the different sexes in the northern juniper populations might experience equal levels of herbivory. This lack of gender dimorphism in biotic interactions could result from the high need of plant secondary metabolites (PSM) against abiotic stresses, which is typical for juniper at high latitudes.
Collapse
Affiliation(s)
- Sari Stark
- Arctic Centre, University of Lapland, Rovaniemi, Finland
- Production System Unit, Natural Resources Institute Finland (Luke), Rovaniemi, Finland
| | - Françoise Martz
- Production System Unit, Natural Resources Institute Finland (Luke), Rovaniemi, Finland
| |
Collapse
|
10
|
Barker HL, Holeski LM, Lindroth RL. Independent and interactive effects of plant genotype and environment on plant traits and insect herbivore performance: A meta‐analysis with Salicaceae. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hilary L. Barker
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin
| | - Liza M. Holeski
- Department of Biological Sciences Northern Arizona University Flagstaff Arizona
| | - Richard L. Lindroth
- Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin
- Department of Entomology University of Wisconsin‐Madison Madison Wisconsin
| |
Collapse
|