1
|
Bohman B, Bersch AJ, Flematti GR, Schlüter PM. Practical preparation of unsaturated very-long-chain fatty acids (VLCFAs) and very-long-chain alkene pollinator attractants. Sci Rep 2024; 14:19694. [PMID: 39181972 PMCID: PMC11344852 DOI: 10.1038/s41598-024-70598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
To prepare very-long-chain fatty acids and alkenes (VLCFAs and VLC alkenes) that are known pollinator attractants for sexually deceptive orchids, and biosynthetic precursors thereof, we applied a methodology allowing us to prepare monounsaturated VLCFAs with chain lengths up to 28 carbons and VLC alkenes up to 31 carbons. We implemented a coupling reaction between commercially available terminal alkynes and bromoalkanoic acids to prepare VLCFAs, allowing the products to be formed in two steps. For VLC alkenes, with many alkyltriphenylphosphonium bromides commercially available, we applied a Wittig reaction approach to prepare (Z)-configured monoenes in a single step. Using practical methods not requiring special reagents or equipment, we obtained 11 VLCFAs in > 90% isomeric purity, and 17 VLC alkenes in > 97% isomeric purity. Such general and accessible synthetic methods are essential for chemical ecology and biochemistry research to aid researchers in unambiguously identifying isolated semiochemicals and their precursors.
Collapse
Affiliation(s)
- Björn Bohman
- School of Molecular Sciences, University of Western Australia, Perth, Australia.
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden.
| | - Aylin J Bersch
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Gavin R Flematti
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Philipp M Schlüter
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
2
|
Perkins J, Hayashi T, Peakall R, Flematti GR, Bohman B. The volatile chemistry of orchid pollination. Nat Prod Rep 2023; 40:819-839. [PMID: 36691832 DOI: 10.1039/d2np00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Covering: up to September 2022Orchids are renowned not only for their diversity of floral forms, but also for their many and often highly specialised pollination strategies. Volatile semiochemicals play a crucial role in the attraction of a wide variety of insect pollinators of orchids. The compounds produced by orchid flowers are as diverse as the pollinators they attract, and here we summarise some of the chemical diversity found across orchid taxa and pollination strategies. We focus on compounds that have been experimentally demonstrated to underpin pollinator attraction. We also highlight the structural elucidation and synthesis of a select subset of important orchid pollinator attractants, and discuss the ecological significance of the discoveries, the gaps in our current knowledge of orchid pollination chemistry, and some opportunities for future research in this field.
Collapse
Affiliation(s)
- James Perkins
- Research School of Biology, The Australian National University, Australia
| | - Tobias Hayashi
- Research School of Biology, The Australian National University, Australia
| | - Rod Peakall
- Research School of Biology, The Australian National University, Australia.,School of Molecular Sciences, The University of Western Australia, Australia
| | - Gavin R Flematti
- School of Molecular Sciences, The University of Western Australia, Australia
| | - Björn Bohman
- Research School of Biology, The Australian National University, Australia.,School of Molecular Sciences, The University of Western Australia, Australia.,Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sweden.
| |
Collapse
|
3
|
Drakolide Structure-activity Relationships for Sexual Attraction of Zeleboria Wasp Pollinator. J Chem Ecol 2022; 48:323-336. [DOI: 10.1007/s10886-021-01324-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 11/26/2022]
|
4
|
Cohen C, Liltved WR, Colville JF, Shuttleworth A, Weissflog J, Svatoš A, Bytebier B, Johnson SD. Sexual deception of a beetle pollinator through floral mimicry. Curr Biol 2021; 31:1962-1969.e6. [PMID: 33770493 DOI: 10.1016/j.cub.2021.03.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/13/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022]
Abstract
Sexual mimicry is a complex multimodal strategy used by some plants to lure insects to flowers for pollination.1-4 It is notable for being highly species-specific and is typically mediated by volatiles belonging to a restricted set of chemical compound classes.3,4 Well-documented cases involve exploitation of bees and wasps (Hymenoptera)5,6 and flies (Diptera).7-9 Although beetles (Coleoptera) are the largest insect order and are well known as pollinators of both early and modern plants,10,11 it has been unclear whether they are sexually deceived by plants during flower visits.12,13 Here we report the discovery of an unambiguous case of sexual deception of a beetle: male longhorn beetles (Chorothyse hessei, Cerambycidae) pollinate the elaborate insectiform flowers of a rare southern African orchid (Disa forficaria), while exhibiting copulatory behavior including biting the antennae-like petals, curving the abdomen into the hairy lip cleft, and ejaculating sperm. The beetles are strongly attracted by (16S,9Z)-16-ethyl hexadec-9-enolide, a novel macrolide that we isolated from the floral scent. Structure-activity studies14,15 confirmed that chirality and other aspects of the structural geometry of the macrolide are critical for the attraction of the male beetles. These results demonstrate a new biological function for plant macrolides and confirm that beetles can be exploited through sexual deception to serve as pollinators.
Collapse
Affiliation(s)
- Callan Cohen
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
| | - William R Liltved
- Compton Herbarium, South African National Biodiversity Institute, Newlands, Cape Town 7735, South Africa
| | - Jonathan F Colville
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Newlands, Cape Town 7735, South Africa; Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Adam Shuttleworth
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
| | - Jerrit Weissflog
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Benny Bytebier
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa
| | - Steven D Johnson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg 3209, South Africa.
| |
Collapse
|
5
|
Bouwmeester H, Schuurink RC, Bleeker PM, Schiestl F. The role of volatiles in plant communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:892-907. [PMID: 31410886 PMCID: PMC6899487 DOI: 10.1111/tpj.14496] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 05/08/2023]
Abstract
Volatiles mediate the interaction of plants with pollinators, herbivores and their natural enemies, other plants and micro-organisms. With increasing knowledge about these interactions the underlying mechanisms turn out to be increasingly complex. The mechanisms of biosynthesis and perception of volatiles are slowly being uncovered. The increasing scientific knowledge can be used to design and apply volatile-based agricultural strategies.
Collapse
Affiliation(s)
- Harro Bouwmeester
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Robert C. Schuurink
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Petra M. Bleeker
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Florian Schiestl
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 107CH‐8008ZürichSwitzerland
| |
Collapse
|
6
|
Bohman B, Weinstein AM, Phillips RD, Peakall R, Flematti GR. 2-(Tetrahydrofuran-2-yl)acetic Acid and Ester Derivatives as Long-Range Pollinator Attractants in the Sexually Deceptive Orchid Cryptostylis ovata. JOURNAL OF NATURAL PRODUCTS 2019; 82:1107-1113. [PMID: 30920220 DOI: 10.1021/acs.jnatprod.8b00772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sexually deceptive orchids achieve pollination by luring male insects to flowers through chemical and sometimes visual mimicry of females. An extreme example of this deception occurs in Cryptostylis, one of only two genera where sexual deception is known to induce pollinator ejaculation. In the present study, bioassay-guided fractionations of Cryptostylis solvent extracts in combination with field bioassays were implemented to isolate and identify floral volatiles attractive to the pollinator Lissopimpla excelsa. ( S)-2-(Tetrahydrofuran-2-yl)acetic acid [( S)-1] and the ester derivatives methyl ( S)-2-(tetrahydrofuran-2-yl)acetate [( S)-2] and ethyl ( S)-2-(tetrahydrofuran-2-yl)acetate [( S)-3], all previously unknown semiochemicals, were confirmed to attract L. excelsa males in field bioassays. Chiral-phase GC and HPLC showed that the natural product 1 comprised a single enantiomer, its S-configuration being confirmed by synthesis of the two enantiomers from known enantiomers of tetrahydrofuran-2-carboxylic acid.
Collapse
Affiliation(s)
- Björn Bohman
- School of Molecular Sciences , The University of Western Australia , Crawley , WA 6009 , Australia
- Ecology and Evolution, Research School of Biology , The Australian National University , Canberra , ACT 2600 , Australia
| | - Alyssa M Weinstein
- School of Molecular Sciences , The University of Western Australia , Crawley , WA 6009 , Australia
- Ecology and Evolution, Research School of Biology , The Australian National University , Canberra , ACT 2600 , Australia
| | - Ryan D Phillips
- Ecology and Evolution, Research School of Biology , The Australian National University , Canberra , ACT 2600 , Australia
- Department of Ecology, Environment and Evolution , La Trobe University , Melbourne , Victoria 3086 , Australia
- Department of Biodiversity Conservation and Attractions , Kings Park Science , 1 Kattidj Close , West Perth , WA , Australia
| | - Rod Peakall
- School of Molecular Sciences , The University of Western Australia , Crawley , WA 6009 , Australia
- Ecology and Evolution, Research School of Biology , The Australian National University , Canberra , ACT 2600 , Australia
| | - Gavin R Flematti
- School of Molecular Sciences , The University of Western Australia , Crawley , WA 6009 , Australia
| |
Collapse
|
7
|
Scaccabarozzi D, Cozzolino S, Guzzetti L, Galimberti A, Milne L, Dixon KW, Phillips RD. Masquerading as pea plants: behavioural and morphological evidence for mimicry of multiple models in an Australian orchid. ANNALS OF BOTANY 2018; 122:1061-1073. [PMID: 30184161 PMCID: PMC6266105 DOI: 10.1093/aob/mcy166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/12/2018] [Indexed: 05/03/2023]
Abstract
Background and Aims While there is increasing recognition of Batesian floral mimicry in plants, there are few confirmed cases where mimicry involves more than one model species. Here, we test for pollination by mimicry in Diuris (Orchidaceae), a genus hypothesized to attract pollinators via mimicry of a range of co-occurring pea plants (Faboideae). Methods Observations of pollinator behaviour were made for Diuris brumalis using arrays of orchid flowers. An analysis of floral traits in the co-flowering community and spectral reflectance measurements were undertaken to test if Di. brumalis and the pea plants showed strong similarity and were likely to be perceived as the same by bees. Pollen removal and fruit-set were recorded at 18 sites over two years to test if fitness of Di. brumalis increased with the abundance of the model species. Key Results Diuris brumalis shares the pollinator species Trichococolletes capillosus and T. leucogenys (Hymenoptera: Colletidae) with co-flowering Faboideae from the genus Daviesia. On Di. brumalis, Trichocolletes exhibited the same stereotyped food-foraging and mate-patrolling behaviour that they exhibit on Daviesia. Diuris and pea plants showed strong morphological similarity compared to the co-flowering plant community, while the spectral reflectance of Diuris was similar to that of Daviesia spp. Fruit-set and pollen removal of Di. brumalis was highest at sites with a greater number of Daviesia flowers. Conclusions Diuris brumalis is pollinated by mimicry of co-occurring congeneric Faboideae species. Evidence for mimicry of multiple models, all of which share pollinator species, suggests that this may represent a guild mimicry system. Interestingly, Di. brumalis belongs to a complex of species with similar floral traits, suggesting that this represents a useful system for investigating speciation in lineages that employ mimicry of food plants.
Collapse
Affiliation(s)
- Daniela Scaccabarozzi
- Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
- Department of Biology, University of Naples Federico II, Complesso Universitario MSA, Naples, Italy
- Kings Park and Botanic Garden, The Botanic Garden and Parks Authority, West Perth, WA, Australia
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Complesso Universitario MSA, Naples, Italy
| | - Lorenzo Guzzetti
- Università degli Studi di Milano-Bicocca, ZooPlantLab, Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza, Milano, Italy
| | - Andrea Galimberti
- Università degli Studi di Milano-Bicocca, ZooPlantLab, Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza, Milano, Italy
| | - Lynne Milne
- School of Earth and Planetary Sciences, Curtin University, Bentley, WA, Australia
| | - Kingsley W Dixon
- Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Ryan D Phillips
- Kings Park and Botanic Garden, The Botanic Garden and Parks Authority, West Perth, WA, Australia
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Vic., Australia
| |
Collapse
|