1
|
Phillips RD, van Kints S, Ong B, Weinstein AM, Peakall R, Flematti GR, Bohman B. Pollination by sexual deception via pro-pheromone mimicry? THE NEW PHYTOLOGIST 2025; 246:2416-2424. [PMID: 40211617 PMCID: PMC12095990 DOI: 10.1111/nph.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/17/2025] [Indexed: 05/23/2025]
Affiliation(s)
- Ryan D. Phillips
- Department of Ecological, Plant and Animal SciencesLa Trobe UniversityMelbourneVic3086Australia
- Research School of BiologyAustralian National UniversityCanberraACT2600Australia
- Royal Botanic Gardens VictoriaCranbourneVic3977Australia
| | - Seeger van Kints
- School of Molecular SciencesUniversity of Western AustraliaPerth6009WAAustralia
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobart7005TasAustralia
| | - Ben Ong
- School of Molecular SciencesUniversity of Western AustraliaPerth6009WAAustralia
| | - Alyssa M. Weinstein
- Research School of BiologyAustralian National UniversityCanberraACT2600Australia
- School of Molecular SciencesUniversity of Western AustraliaPerth6009WAAustralia
| | - Rod Peakall
- Research School of BiologyAustralian National UniversityCanberraACT2600Australia
- School of Molecular SciencesUniversity of Western AustraliaPerth6009WAAustralia
| | - Gavin R. Flematti
- School of Molecular SciencesUniversity of Western AustraliaPerth6009WAAustralia
| | - Björn Bohman
- Research School of BiologyAustralian National UniversityCanberraACT2600Australia
- School of Molecular SciencesUniversity of Western AustraliaPerth6009WAAustralia
- Department of Plant Protection BiologySwedish University of Agriculture23422LommaSweden
| |
Collapse
|
2
|
Frey T, Kwadha CA, Haag F, Pelletier J, Wallin EA, Holgersson E, Hedenström E, Bohman B, Bengtsson M, Becher PG, Krautwurst D, Witzgall P. The human odorant receptor OR10A6 is tuned to the pheromone of the commensal fruit fly Drosophila melanogaster. iScience 2022; 25:105269. [PMID: 36300000 PMCID: PMC9589189 DOI: 10.1016/j.isci.2022.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/10/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
All living things speak chemistry. The challenge is to reveal the vocabulary, the odorants that enable communication across phylogenies and to translate them to physiological, behavioral, and ecological function. Olfactory receptors (ORs) interface animals with airborne odorants. Expression in heterologous cells makes it possible to interrogate single ORs and to identify cognate ligands. The cosmopolitan, anthropophilic strain of the vinegar fly Drosophila melanogaster depends on human resources and housing for survival. Curiously, humans sense the pheromone (Z)-4-undecenal (Z4-11Al) released by single fly females. A screening of all human ORs shows that the most highly expressed OR10A6 is tuned to Z4-11Al. Females of an ancestral African fly strain release a blend of Z4-11Al and Z4-9Al that produces a different aroma, which is how we distinguish these fly strains by nose. That flies and humans sense Z4-11Al via dedicated ORs shows how convergent evolution shapes communication channels between vertebrate and invertebrate animals. Humans sense the sex pheromone Z411-Al released by single Drosophila melanogaster females The most highly expressed human olfactory receptor OR10A6 is tuned to Z411-Al An African fly strain emits two aldehydes, which we distinguish from Z411-Al by nose Convergent evolution shapes chemical communication between phylogenies
Collapse
Affiliation(s)
- Tim Frey
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Charles A. Kwadha
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Franziska Haag
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Julien Pelletier
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Erika A. Wallin
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | | | - Erik Hedenström
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | - Björn Bohman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Marie Bengtsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Paul G. Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Dietmar Krautwurst
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden,Corresponding author
| |
Collapse
|
3
|
Kanter JP, Honold PJ, Lüke D, Heiles S, Spengler B, Fraatz MA, Harms C, Ley JP, Zorn H, Hammer AK. An enzymatic tandem reaction to produce odor-active fatty aldehydes. Appl Microbiol Biotechnol 2022; 106:6095-6107. [PMID: 36040487 PMCID: PMC9468042 DOI: 10.1007/s00253-022-12134-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
Abstract Aldehydes represent a versatile and favored class of flavoring substances. A biocatalytic access to odor-active aldehydes was developed by conversion of fatty acids with two enzymes of the α-dioxygenase pathway. The recombinant enzymes α-dioxygenase (α-DOX) originating from Crocosphaera subtropica and fatty aldehyde dehydrogenase (FALDH) from Vibrio harveyi were heterologously expressed in E. coli, purified, and applied in a coupled (tandem) repetitive reaction. The concept was optimized in terms of number of reaction cycles and production yields. Up to five cycles and aldehyde yields of up to 26% were achieved. Afterward, the approach was applied to sea buckthorn pulp oil as raw material for the enzyme catalyzed production of flavoring/fragrance ingredients based on complex aldehyde mixtures. The most abundant fatty acids in sea buckthorn pulp oil, namely palmitic, palmitoleic, oleic, and linoleic acid, were used as substrates for further biotransformation experiments. Various aldehydes were identified, semi-quantified, and sensorially characterized by means of headspace–solid phase microextraction–gas chromatography–mass spectrometry–olfactometry (HS–SPME–GC–MS–O). Structural validation of unsaturated aldehydes in terms of double-bond positions was performed by multidimensional high-resolution mass spectrometry experiments of their Paternò–Büchi (PB) photoproducts. Retention indices and odor impressions of inter alia (Z,Z)-5,8-tetradecadienal (Z,Z)-6,9-pentadecadienal, (Z)-8-pentadecenal, (Z)-4-tridecenal, (Z)-6-pentadecenal, and (Z)-8-heptadecenal were determined for the first time. Key points • Coupled reaction of Csα-DOX and VhFALDH yields chain-shortened fatty aldehydes. • Odors of several Z-unsaturated fatty aldehydes are described for the first time. • Potential for industrial production of aldehyde-based odorants from natural sources. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12134-3.
Collapse
Affiliation(s)
- Jean-Philippe Kanter
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Philipp Jakob Honold
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - David Lüke
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Marco Alexander Fraatz
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35394, Giessen, Germany
| | - Christoph Harms
- Symrise AG, Muehlenfeldstrasse 1, 37603, Holzminden, Germany
| | - Jakob Peter Ley
- Symrise AG, Muehlenfeldstrasse 1, 37603, Holzminden, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35394, Giessen, Germany
| | - Andreas Klaus Hammer
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany. .,Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35394, Giessen, Germany.
| |
Collapse
|
4
|
Charroux B, Daian F, Royet J. Drosophila Aversive Behavior toward Erwinia carotovora carotovora Is Mediated by Bitter Neurons and Leukokinin. iScience 2020; 23:101152. [PMID: 32450516 PMCID: PMC7251953 DOI: 10.1016/j.isci.2020.101152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/02/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
The phytopathogen Erwinia carotovora carotovora (Ecc) has been used successfully to decipher some of the mechanisms that regulate the interactions between Drosophila melanogaster and bacteria, mostly following forced association between the two species. How do Drosophila normally perceive and respond to the presence of Ecc is unknown. Using a fly feeding two-choice assay and video tracking, we show that Drosophila are first attracted but then repulsed by an Ecc-contaminated solution. The initial attractive phase is dependent on the olfactory Gr63a and Gαq proteins, whereas the second repulsive phase requires a functional gustatory system. Genetic manipulations and calcium imaging indicate that bitter neurons and gustatory receptors Gr66a and Gr33a are needed for the aversive phase and that the neuropeptide leukokinin is also involved. We also demonstrate that these behaviors are independent of the NF-κB cascade that controls some of the immune, metabolic, and behavioral responses to bacteria.
Collapse
Affiliation(s)
| | - Fabrice Daian
- Aix-Marseille Université, CNRS, IBDM, Marseille, France
| | - Julien Royet
- Aix-Marseille Université, CNRS, IBDM, Marseille, France.
| |
Collapse
|
5
|
Roberts SC, Havlíček J, Schaal B. Human olfactory communication: current challenges and future prospects. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190258. [PMID: 32306869 DOI: 10.1098/rstb.2019.0258] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although anthropologists frequently report the centrality of odours in the daily lives and cultural beliefs of many small-scale communities, Western scholars have historically considered the sense of smell as minimally involved in human communication. Here, we suggest that the origin and persistence of this latter view might be a consequence of the fact that most research is conducted on participants from Western societies who, collectively, were rather old (adults), deodorized and desensitized (ODD) to various aspects of olfactory perception. The view is rapidly changing, however, and this themed issue provides a timely overview of the current state-of-the-art on human chemocommunication. Based on evolutionary models of communication, the papers cover both general mechanisms of odour production by 'senders' and odour perception by 'receivers'. Focus on specific functional contexts includes reciprocal impact of odours between infants and mothers, the role of odour in mate choice and how odours communicate emotion and disease. Finally, a position paper outlines pitfalls and opportunities for the future, against the context of the replication crisis in psychology. We believe a more nuanced view of human chemical communication is within our grasp if we can continue to develop inter-disciplinary insights and expand research activities beyond ODD people. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.
Collapse
Affiliation(s)
- S Craig Roberts
- Division of Psychology, University of Stirling, Stirling FK9 4LA, UK
| | - Jan Havlíček
- Faculty of Science, Charles University, Viničná 7, 128 42 Prague 2, Czech Republic
| | - Benoist Schaal
- Developmental Ethology and Cognitive Psychology Laboratory, Centre for Taste, Smell and Feeding Behaviour Science, UMR 6265 CNRS-Université de Bourgogne-Inra-AgroSup, Dijon, France
| |
Collapse
|