1
|
Dolejšová K, Křivánek J, Štáfková J, Horáček N, Havlíčková J, Roy V, Kalinová B, Roy A, Kyjaková P, Hanus R. Identification of a queen primer pheromone in higher termites. Commun Biol 2022; 5:1165. [PMID: 36323794 PMCID: PMC9630296 DOI: 10.1038/s42003-022-04163-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
It is long established that queens of social insects, including termites, maintain their reproductive dominance with queen primer pheromones (QPPs). Yet, the QPP chemistry has only been elucidated in a single species of lower termites. By contrast, the most diversified termite family Termitidae (higher termites), comprising over 70% of termite species, has so far resisted all attempts at QPP identification. Here, we show that the queen- and egg-specific sesquiterpene (3R,6E)-nerolidol acts as the QPP in the higher termite Embiratermes neotenicus. This species has a polygynous breeding system, in which the primary queen is replaced by multiple neotenic queens of parthenogenetic origin. We demonstrate that (3R,6E)-nerolidol suppresses the development of these parthenogenetic queens and thus mimics the presence of mature queen(s). It acts as an airborne signal and may be used to optimize the number of queens, thus being the key regulatory element in the special breeding system of E. neotenicus.
Collapse
Affiliation(s)
- Klára Dolejšová
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Křivánek
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Štáfková
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Natan Horáček
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Havlíčková
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Virginie Roy
- Université Paris Est Créteil, Sorbonne Université, Université Paris Cité, CNRS, INRAE, IRD, iEES Paris, Créteil, France
| | | | - Amit Roy
- Czech University of Life Sciences, Prague, Czech Republic
| | - Pavlína Kyjaková
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Hanus
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Mitaka Y, Akino T. A Review of Termite Pheromones: Multifaceted, Context-Dependent, and Rational Chemical Communications. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.595614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Termite colonies, composed of large numbers of siblings, develop an important caste-based division of labor; individuals in these societies interact via intra- or intercaste chemical communications. For more than 50 years, termites have been known to use a variety of pheromones to perform tasks necessary for maintenance of their societies, similar to eusocial hymenopterans. Although trail-following pheromones have been chemically identified in various termites, other types of pheromones have not been elucidated chemically or functionally. In the past decade, however, chemical compositions and biological functions have been successfully identified for several types of termite pheromones; accordingly, the details of the underlying pheromone communications have been gradually revealed. In this review, we summarize both the functions of all termite pheromones identified so far and the chemical interactions among termites and other organisms. Subsequently, we argue how termites developed their sophisticated pheromone communication. We hypothesize that termites have diverted defensive and antimicrobial substances to pheromones associated in caste recognition and caste-specific roles. Furthermore, termites have repeatedly used a pre-existing pheromone or have added supplementary compounds to it in accordance with the social context, leading to multifunctionalization of pre-existing pheromones and emergence of new pheromones. These two mechanisms may enable termites to transmit various context-dependent information with a small number of chemicals, thus resulting in formation of coordinated, complex, and rational chemical communication systems.
Collapse
|
3
|
Sillam-Dussès D, Šobotník J, Bourguignon T, Wen P, Sémon E, Robert A, Cancello EM, Leroy C, Lacey MJ, Bordereau C. Trail-Following Pheromones in the Termite Subfamily Syntermitinae (Blattodea, Termitoidae, Termitidae). J Chem Ecol 2020; 46:475-482. [PMID: 32529331 DOI: 10.1007/s10886-020-01180-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 11/26/2022]
Abstract
Trail-following behavior is a key to ecological success of termites, allowing them to orient themselves between the nesting and foraging sites. This behavior is controlled by specific trail-following pheromones produced by the abdominal sternal gland occurring in all termite species and developmental stages. Trail-following communication has been studied in a broad spectrum of species, but the "higher" termites (i.e. Termitidae) from the subfamily Syntermitinae remain surprisingly neglected. To fill this gap, we studied the trail-following pheromone in six genera and nine species of Syntermitinae. Our chemical and behavioral experiments showed that (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol is the single component of the pheromone of all the termite species studied, except for Silvestritermes euamignathus. This species produces both (3Z,6Z)-dodeca-3,6-dien-1-ol and neocembrene, but only (3Z,6Z)-dodeca-3,6-dien-1-ol elicits trail-following behavior. Our results indicate the importance of (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol, the most widespread communication compound in termites, but also the repeated switches to other common pheromones as exemplified by S. euamignathus.
Collapse
Affiliation(s)
- David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology UR 4443, University Sorbonne Paris Nord, Villetaneuse, France.
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic.
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Thomas Bourguignon
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ping Wen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 650223, Yunnan Province, China
| | - Etienne Sémon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Alain Robert
- Institute of Ecology and Environmental Sciences of Paris, Institute of Research for Development - Sorbonne Universités, U 242, Bondy, France
| | - Eliana M Cancello
- Museu de Zoologia da Universidade de São Paulo, CP 42391 CEP 04218970, São Paulo, SP, Brazil
| | - Chloé Leroy
- Laboratory of Experimental and Comparative Ethology UR 4443, University Sorbonne Paris Nord, Villetaneuse, France
| | - Michael J Lacey
- CSIRO National Collections and Marine Infrastructure, G.P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Christian Bordereau
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
4
|
Havlíčková J, Dolejšová K, Tichý M, Vrkoslav V, Kalinová B, Kyjaková P, Hanus R. (3R,6E)-nerolidol, a fertility-related volatile secreted by the queens of higher termites (Termitidae: Syntermitinae). ACTA ACUST UNITED AC 2020; 74:251-264. [PMID: 30920958 DOI: 10.1515/znc-2018-0197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/02/2019] [Indexed: 11/15/2022]
Abstract
The queens of advanced social insects maintain their reproductive monopoly by using exocrine chemicals. The chemistry of these "queen pheromones" in termites is poorly known. We show that primary queens of four higher termites from the subfamily Syntermitinae (Embiratermes neotenicus, Silvestritermes heyeri, Labiotermes labralis, and Cyrilliotermes angulariceps) emit significant amounts of the sesquiterpene alcohol (E)-nerolidol. It is the dominant analyte in queen body washes; it is present on the surface of eggs, but absent in kings, workers, and soldiers. In E. neotenicus, it is also produced by replacement neotenic queens, in quantities correlated with their fertility. Using newly synthesised (3R,6E)-nerolidol, we demonstrate that the queens of this species produce only the (R) enantiomer. It is distributed over the surface of their abdomen, in internal tissues, and in the haemolymph, as well as in the headspace of the queens. Both (R) and (S) enantiomers are perceived by the antennae of E. neotenicus workers. The naturally occurring (R) enantiomer elicited a significantly larger antennal response, but it did not show any behavioural effect. In spite of technical difficulties encountered in long-term experiments with the studied species, (3R,6E)-nerolidol remains among eventual candidates for the role in queen fertility signalling.
Collapse
Affiliation(s)
- Jana Havlíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague, Czech Republic
| | - Klára Dolejšová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Michal Tichý
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague, Czech Republic
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague, Czech Republic
| | - Blanka Kalinová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague, Czech Republic.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Pavlína Kyjaková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague, Czech Republic
| | - Robert Hanus
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague, Czech Republic
| |
Collapse
|
5
|
Gössinger E. Chemistry of the Secondary Metabolites of Termites. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 109:1-384. [PMID: 31637529 DOI: 10.1007/978-3-030-12858-6_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Isolation, structure determination, synthesis, and biochemistry of the low-molecular-weight compounds of the secretion of exocrine glands of termites are described, with an emphasis on pheromones and defensive compounds.
Collapse
Affiliation(s)
- Edda Gössinger
- Institute of Chemistry, University of Vienna, Vienna, Austria.
- , Mistelbach, Austria.
| |
Collapse
|