1
|
Stefaniak KR, Kellogg L, Close MT, Powers KE. Chemical Composition of Secretions from Facial Glands of Captive Hoary Bat (Lasiurus cinereus) in Virginia. J Chem Ecol 2025; 51:42. [PMID: 40108071 PMCID: PMC11923032 DOI: 10.1007/s10886-025-01593-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
Our study represents the first known report of hoary bat (Lasiurus cinereus) facial gland histology and chemical characterization of facial gland secretions. While in captivity from October 2023 to February 2024, facial secretions of a male hoary bat were observed and collected. Gas chromatography-mass spectrometry (GC-MS) analysis of a methanol extraction of November 2023 samples identified 23 compounds after comparing retention times, mass spectra, and Kovats retention index. These compounds consisted of alkanes, alcohols, ketones, terpenoids, monoacylglycerols, and androgens. Of interest was the identification of five androstane derivatives, testosterone metabolites, that have not been seen previously in mammal secretions and indicate possible mating readiness. The chemical analyses from November swabs and histological examination of facial skin in February suggest that this male was actively secreting mate-signaling compounds throughout late fall and winter months. Anecdotal mating records on wintering grounds combined with this bat's warm captive environment likely allowed for this extended mating readiness for his many months at the wildlife center.
Collapse
Affiliation(s)
| | - Lark Kellogg
- Southwest Virginia Wildlife Center of Roanoke, Roanoke, VA, 24018, USA
| | - Matthew T Close
- Biology Department, Radford University, Radford, VA, 24142, USA
| | - Karen E Powers
- Biology Department, Radford University, Radford, VA, 24142, USA
| |
Collapse
|
2
|
Wilkinson GS, Adams DM, Rayner JG. Sex, season, age and status influence urinary steroid hormone profiles in an extremely polygynous neotropical bat. Horm Behav 2024; 164:105606. [PMID: 39059233 PMCID: PMC11330717 DOI: 10.1016/j.yhbeh.2024.105606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Several polygynous mammals exhibit reproductive skew in which only a few males reproduce. Successful males need strength, stamina and fighting ability to exclude competitors. Consequently, during the mating season their androgens and glucocorticoids are expected to increase to support spermatogenesis and aggressive behavior. But, during the nonmating season these hormones should decline to minimize deleterious effects, such as reduced immune function. Bats that exhibit harem polygyny in which males aggressively defend large groups of females year-round are ideal for assessing hormonal and other consequences of extreme polygyny. Here we use DNA methylation to estimate age and gas chromatography, tandem mass spectrometry to profile steroid metabolites in urine of wild greater spear-nosed bats, Phyllostomus hastatus, across seasons. We find that condition, measured by relative weight, is lower during the mating season for both sexes, although it remains high in harem males during the mating season. Average age of females is greater than males, and females exhibit substantial seasonal differences in androgens, estrogens and glucocorticoids with higher levels of all hormones during the mating season. Males, however, show little seasonal differences but substantial age-associated increases in most steroid metabolites. Harem males have larger, persistently scrotal testes and are older than bachelor males. While cortisone generally declines with age, harem males maintain higher amounts of biologically active cortisol than bachelor males all year and cortisol levels increase more quickly in response to restraint in males than in females. Taken together, these results suggest that attaining reproductive dominance requires hormone levels that reduce lifespan.
Collapse
Affiliation(s)
| | - Danielle M Adams
- Department of Biology, University of Maryland, College Park, MD 20742
| | - Jack G Rayner
- Department of Biology, University of Maryland, College Park, MD 20742
| |
Collapse
|
3
|
Vanderwolf K, Kyle C, Davy C. A review of sebum in mammals in relation to skin diseases, skin function, and the skin microbiome. PeerJ 2023; 11:e16680. [PMID: 38144187 PMCID: PMC10740688 DOI: 10.7717/peerj.16680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Diseases vary among and within species but the causes of this variation can be unclear. Immune responses are an important driver of disease variation, but mechanisms on how the body resists pathogen establishment before activation of immune responses are understudied. Skin surfaces of mammals are the first line of defense against abiotic stressors and pathogens, and skin attributes such as pH, microbiomes, and lipids influence disease outcomes. Sebaceous glands produce sebum composed of multiple types of lipids with species-specific compositions. Sebum affects skin barrier function by contributing to minimizing water loss, supporting thermoregulation, protecting against pathogens, and preventing UV-induced damage. Sebum also affects skin microbiome composition both via its antimicrobial properties, and by providing potential nutrient sources. Intra- and interspecific variation in sebum composition influences skin disease outcomes in humans and domestic mammal species but is not well-characterized in wildlife. We synthesized knowledge on sebum function in mammals in relation to skin diseases and the skin microbiome. We found that sebum composition was described for only 29 live, wild mammalian species. Sebum is important in dermatophilosis, various forms of dermatitis, demodicosis, and potentially white-nose syndrome. Sebum composition likely affects disease susceptibility, as lipid components can have antimicrobial functions against specific pathogens. It is unclear why sebum composition is species-specific, but both phylogeny and environmental effects may drive differences. Our review illustrates the role of mammal sebum function and influence on skin microbes in the context of skin diseases, providing a baseline for future studies to elucidate mechanisms of disease resistance beyond immune responses.
Collapse
Affiliation(s)
- Karen Vanderwolf
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Christopher Kyle
- Forensic Science Department, Trent University, Peterborough, Ontario, Canada
- Natural Resources DNA Profiling and Forensics Center, Trent University, Peterborough, Ontario, Canada
| | - Christina Davy
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Rojas CA, Marks SL, Borras E, Lesea H, McCartney MM, Coil DA, Davis CE, Eisen JA. Characterization of the microbiome and volatile compounds in anal gland secretions from domestic cats (Felis catus) using metagenomics and metabolomics. Sci Rep 2023; 13:19382. [PMID: 37938241 PMCID: PMC10632438 DOI: 10.1038/s41598-023-45997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Many mammals rely on volatile organic chemical compounds (VOCs) produced by bacteria for their communication and behavior, though little is known about the exact molecular mechanisms or bacterial species that are responsible. We used metagenomic sequencing, mass-spectrometry based metabolomics, and culturing to profile the microbial and volatile chemical constituents of anal gland secretions in twenty-three domestic cats (Felis catus), in attempts to identify organisms potentially involved in host odor production. We found that the anal gland microbiome was dominated by bacteria in the genera Corynebacterium, Bacteroides, Proteus, Lactobacillus, and Streptococcus, and showed striking variation among individual cats. Microbiome profiles also varied with host age and obesity. Metabolites such as fatty-acids, ketones, aldehydes and alcohols were detected in glandular secretions. Overall, microbiome and metabolome profiles were modestly correlated (r = 0.17), indicating that a relationship exists between the bacteria in the gland and the metabolites produced in the gland. Functional analyses revealed the presence of genes predicted to code for enzymes involved in VOC metabolism such as dehydrogenases, reductases, and decarboxylases. From metagenomic data, we generated 85 high-quality metagenome assembled genomes (MAGs). Of importance were four MAGs classified as Corynebacterium frankenforstense, Proteus mirabilis, Lactobacillus johnsonii, and Bacteroides fragilis. They represent strong candidates for further investigation of the mechanisms of volatile synthesis and scent production in the mammalian anal gland.
Collapse
Affiliation(s)
- Connie A Rojas
- Genome Center, University of California-Davis, Davis, CA, USA.
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, USA.
| | - Stanley L Marks
- Department of Medicine and Epidemiology, University of California-Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Eva Borras
- Department of Mechanical and Aerospace Engineering, University of California-Davis, Davis, CA, USA
- UC Davis Lung Center, University of California-Davis, Davis, CA, USA
| | - Hira Lesea
- Department of Microbiology and Molecular Genetics, University of California-Davis, Davis, CA, USA
| | - Mitchell M McCartney
- Department of Mechanical and Aerospace Engineering, University of California-Davis, Davis, CA, USA
- UC Davis Lung Center, University of California-Davis, Davis, CA, USA
- VA Northern California Health Care System, Mather, CA, USA
| | - David A Coil
- Genome Center, University of California-Davis, Davis, CA, USA
| | - Cristina E Davis
- Department of Mechanical and Aerospace Engineering, University of California-Davis, Davis, CA, USA
- UC Davis Lung Center, University of California-Davis, Davis, CA, USA
- VA Northern California Health Care System, Mather, CA, USA
| | - Jonathan A Eisen
- Genome Center, University of California-Davis, Davis, CA, USA
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, USA
| |
Collapse
|
5
|
Rojas CA, Marks SL, Borras E, Lesea H, McCartney MM, Coil D, Davis CE, Eisen JA. Characterization of the microbiome and volatile compounds in anal gland secretions from domestic cats (Felis catus) using metagenomics and metabolomics. RESEARCH SQUARE 2023:rs.3.rs-2883555. [PMID: 37214811 PMCID: PMC10197813 DOI: 10.21203/rs.3.rs-2883555/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Animals rely on volatile chemical compounds for their communication and behavior. Many of these compounds are sequestered in endocrine and exocrine glands and are synthesized by anaerobic microbes. While the volatile organic compound (VOC) or microbiome composition of glandular secretions has been investigated in several mammalian species, few have linked specific bacterial taxa to the production of volatiles or to specific microbial gene pathways. Here, we use metagenomic sequencing, mass-spectrometry based metabolomics, and culturing to profile the microbial and volatile chemical constituents of anal gland secretions in twenty-three domestic cats (Felis catus), in attempts to identify organisms potentially involved in host odor production. We found that the anal gland microbiome was dominated by bacteria in the genera Corynebacterium, Bacteroides, Proteus, Lactobacillus, and Streptococcus, and showed striking variation among individual cats. Microbiome profiles also varied with host age and obesity. Metabolites such as fatty-acids, ketones, aldehydes and alcohols were detected in glandular secretions. Overall, microbiome and metabolome profiles were modestly correlated (r=0.17), indicating that a relationship exists between the bacteria in the gland and the metabolites produced in the gland. Functional analyses revealed the presence of genes predicted to code for enzymes involved in VOC metabolism such as dehydrogenases, reductases, and decarboxylases. From metagenomic data, we generated 85 high-quality metagenome assembled genomes (MAGs). Of these, four were inferred to have high relative abundance in metagenome profiles and had close relatives that were recovered as cultured isolates. These four MAGs were classified as Corynebacterium frankenforstense, Proteus mirabilis, Lactobacillus johnsonii, and Bacteroides fragilis. They represent strong candidates for further investigation of the mechanisms of volatile synthesis and scent production in the mammalian anal gland.
Collapse
|
6
|
Zhang C, Sun C, Lucas JR, Gu H, Feng J, Jiang T. Individuality and function of chemical signals during conflict resolution of a mammal. Ann N Y Acad Sci 2021; 1509:74-88. [PMID: 34761396 DOI: 10.1111/nyas.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022]
Abstract
Individual recognition via communication signals is a critical component of social behavior, and provides the basis of conflict resolution, territorial behavior, and mate choice. However, the function of chemical signals in mammalian individual recognition and conflict resolution has largely been unexplored despite olfaction being a dominant sensory modality in many mammalian species. Here, we describe behavioral tests designed to evaluate the potential role of forehead gland secretions during conflict related to territorial defense in male Great Himalayan leaf-nosed bats. We used gas chromatography-mass spectrometry to quantify the chemical composition. Our results showed that forehead gland secretions contain 16 categories of compounds, including 84 volatile compounds. The concentrations of compounds and their categories differed significantly among individuals. Moreover, behavioral studies indicated that males can use chemical signals for individual recognition. Contests were staged between males with or without functioning forehead glands. Paired males without functioning forehead glands displayed more physical contact and longer contest duration compared with pairs with functioning glands. Moreover, males with a functioning gland were more likely to win in contests when paired with males without a functioning gland. These findings support a growing amount of evidence that chemical signals play a vital role in conflict resolution in mammals.
Collapse
Affiliation(s)
- Chunmian Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Congnan Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Jeffrey R Lucas
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Hao Gu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China.,College of Life Science, Jilin Agricultural University, Changchun, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
7
|
Muñoz‐Romo M, Page RA, Kunz TH. Redefining the study of sexual dimorphism in bats: following the odour trail. Mamm Rev 2021. [DOI: 10.1111/mam.12232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mariana Muñoz‐Romo
- Smithsonian Tropical Research Institute Apartado 0843‐03092 Balboa, Ancón Panamá
- Laboratorio de Zoología Aplicada Departamento de Biología Facultad de Ciencias Universidad de Los Andes Mérida5101Venezuela
| | - Rachel A. Page
- Smithsonian Tropical Research Institute Apartado 0843‐03092 Balboa, Ancón Panamá
| | - Thomas H. Kunz
- Center for Ecology and Conservation Biology Department of Biology Boston University Boston02215USA
| |
Collapse
|
8
|
Braun de Torrez EC, Gore JA, Ober HK. Evidence of resource-defense polygyny in an endangered subtropical bat, Eumops floridanus. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
Muñoz-Romo M, Flores V, Ramoni-Perazzi P, Page RA. The crust of a male: does size matter when females are fertile? Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02914-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Male condition and group heterogeneity predict extra-group paternity in a Neotropical bat. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Campos SM, Rojas V, Wilczynski W. Arginine vasotocin impacts chemosensory behavior during social interactions of Anolis carolinensis lizards. Horm Behav 2020; 124:104772. [PMID: 32439348 DOI: 10.1016/j.yhbeh.2020.104772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
In reptiles, arginine vasotocin (AVT) impacts the performance of and response to visual social signals, but whether AVT also operates within the chemosensory system as arginine vasopressin (AVP) does in mammals is unknown, despite social odors being potent modifiers of competitive and appetitive behavior in reptiles. Here, we ask whether elevated levels of exogenous AVT impact rates of chemical display behavior (e.g. tongue flicks) in adult males, and whether conspecific males or females can chemically discriminate between competitor males based on differing levels of exogenous AVT in green anoles (Anolis carolinensis). We injected wild-caught green anole males with either AVT (AVT-Males) or a vehicle control (CON-Males) solution, then presented treated males with a conspecific stimulus (Intruder-Male or Intruder-Female) and filmed 30-minute interactions. We found that AVT-Males were faster than CON-Males to perform a tongue flick to conspecifics, and faster to chemically display toward Intruder-Females, suggesting AVT increased male interest in available chemical information during social encounters. Intruders performed more lip smack behavior when interacting with AVT-Males than with CON-Males, and Intruder-Males performed more tongue flick behavior when interacting with AVT-Males than with CON-Males, suggesting anoles can discriminate between conspecifics based on exogenous AVT levels. We also found a reduction in Intruder movement behavior when Intruders were paired with AVT-Males. This study provides empirical support for AVT-mediated chemosensory behavior in reptilian social interactions, in a microsmatic lizard species, suggesting the mechanism by which mammalian AVP and non-mammalian AVT mediate chemosensory behavior during social interactions may be evolutionarily conserved.
Collapse
Affiliation(s)
- Stephanie M Campos
- Georgia State University, Neuroscience Institute and Center for Behavioral Neuroscience, Atlanta, GA, USA.
| | - Valentina Rojas
- Universidad del Bío-Bío, Concepción, Chile; Universidad Catolica del Maule, Talca, Chile
| | - Walter Wilczynski
- Georgia State University, Neuroscience Institute and Center for Behavioral Neuroscience, Atlanta, GA, USA
| |
Collapse
|
12
|
Flores V, Carter GG, Halczok TK, Kerth G, Page RA. Social structure and relatedness in the fringe-lipped bat ( Trachops cirrhosus). ROYAL SOCIETY OPEN SCIENCE 2020; 7:192256. [PMID: 32431896 PMCID: PMC7211832 DOI: 10.1098/rsos.192256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
General insights into the causes and effects of social structure can be gained from comparative analyses across socially and ecologically diverse taxa, such as bats, but long-term data are lacking for most species. In the neotropical fringe-lipped bat, Trachops cirrhosus, social transmission of foraging behaviour is clearly demonstrated in captivity, yet its social structure in the wild remains unclear. Here, we used microsatellite-based estimates of relatedness and records of 157 individually marked adults from 106 roost captures over 6 years, to infer whether male and female T. cirrhosus have preferred co-roosting associations and whether such associations were influenced by relatedness. Using a null model that controlled for year and roosting location, we found that both male and female T. cirrhosus have preferred roosting partners, but that only females demonstrate kin-biased association. Most roosting groups (67%) contained multiple females with one or two reproductive males. Relatedness patterns and recapture records corroborate genetic evidence for female philopatry and male dispersal. Our study adds to growing evidence that many bats demonstrate preferred roosting associations, which has the potential to influence social information transfer.
Collapse
Affiliation(s)
- Victoria Flores
- Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th Street, Chicago, IL 60637, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá
| | - Gerald G. Carter
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Ave, Columbus, OH 43210, USA
| | - Tanja K. Halczok
- Greifswald University, Zoological Institute and Museum, Soldmannstr. 14, 17489 Greifswald, Germany
| | - Gerald Kerth
- Greifswald University, Zoological Institute and Museum, Soldmannstr. 14, 17489 Greifswald, Germany
| | - Rachel A. Page
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá
| |
Collapse
|
13
|
Faulkes CG, Elmore JS, Baines DA, Fenton B, Simmons NB, Clare EL. Chemical characterisation of potential pheromones from the shoulder gland of the Northern yellow-shouldered-bat, Sturnira parvidens (Phyllostomidae: Stenodermatinae). PeerJ 2019; 7:e7734. [PMID: 31579609 PMCID: PMC6754726 DOI: 10.7717/peerj.7734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022] Open
Abstract
Bats of the genus Sturnira (Family Phyllostomidae) are characterised by shoulder glands that are more developed in reproductively mature adult males. The glands produce a waxy secretion that accumulates on the fur around the gland, dyeing the fur a dark colour and giving off a pungent odour. These shoulder glands are thought to play a role in their reproductive behaviour. Using gas chromatography–mass spectrometry, we analysed solvent extracts of fur surrounding the shoulder gland in the northern-shouldered bat, Sturnira parvidens to (i) characterise the chemical composition of shoulder gland secretions for the first time, and (ii) look for differences in chemical composition among and between adult males, sub-adult/juvenile males and adult females. Fur solvent extracts were analysed as liquids and also further extracted using headspace solid-phase microextraction to identify volatile components in the odour itself. Odour fingerprint analysis using non-metric multidimensional scaling plots and multivariate analysis revealed clear and significant differences (P < 0.001) between adult males vs both juvenile males and adult females. The chemical components of the shoulder gland secretion included terpenes and phenolics, together with alcohols and esters, most likely derived from the frugivorous diet of the bat. Many of the compounds identified were found exclusively or in elevated quantities among adult (reproductive) males compared with adult females and non-reproductive (juvenile) males. This strongly suggests a specific role in male–female attraction although a function in male–male competition and/or species recognition is also possible.
Collapse
Affiliation(s)
- Chris G Faulkes
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - J Stephen Elmore
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | | | - Brock Fenton
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Nancy B Simmons
- Department of Mammalogy Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Elizabeth L Clare
- School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|