1
|
Fuchs B, Damerau A, Yang B, Muola A. Reduced seed viability in exchange for transgenerational plant protection in an endophyte-symbiotic grass: does the defensive mutualism concept pass the fitness test? ANNALS OF BOTANY 2024; 134:993-1002. [PMID: 39132894 PMCID: PMC11687620 DOI: 10.1093/aob/mcae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND AND AIMS Epichloë endophytes are vertically transmitted via grass seeds and chemically defend their hosts against herbivory. Endophyte-conferred plant defence via alkaloid biosynthesis might occur independently of costs for host plant growth. However, fitness consequences of endophyte-conferred defence and transgenerational effects on herbivore resistance of progeny plants are rarely studied. The aim of this study was to test whether severe defoliation in mother plants affects their seed production, seed germination rate and the endophyte-conferred resistance of progeny plants. METHODS In a field study, we tested the effects of defoliation and endophyte symbiosis (Epichloë uncinata) on host plant (Festuca pratensis) performance, loline alkaloid concentrations in leaves and seeds, seed biomass and seed germination rates. In a subsequent greenhouse study, we challenged the progeny of the plants from the field study to aphid herbivory and tested whether defoliation of mother plants affects endophyte-conferred resistance against aphids in progeny plants. KEY RESULTS Defoliation of the mother plants resulted in a reduction of alkaloid concentrations in leaves and elevated the alkaloid concentrations in seeds when compared with non-defoliated endophyte-symbiotic plants. Viability and germination rate of seeds of defoliated endophyte-symbiotic plants were significantly lower compared with those of non-defoliated endophyte-symbiotic plants and endophyte-free (defoliated and non-defoliated) plants. During 6 weeks of growth, seedlings of defoliated endophyte-symbiotic mother plants had elevated alkaloid concentrations, which was negatively correlated with aphid performance. CONCLUSIONS Endophyte-conferred investment in higher alkaloid levels in seeds, elicited by defoliation, provided protection from herbivores in progenies during the first weeks of plant establishment. Better protection of seeds via high alkaloid concentrations was negatively correlated with seed germination, indicating a trade-off between protection and viability.
Collapse
Affiliation(s)
- Benjamin Fuchs
- Biodiversity Unit, University of Turku, Turku FI-20014, Finland
| | - Annelie Damerau
- Food Sciences, Department of Life Technologies, University of Turku, Turku FI-20014, Finland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, Turku FI-20014, Finland
| | - Anne Muola
- Biodiversity Unit, University of Turku, Turku FI-20014, Finland
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
2
|
Muola A, Birge T, Helander M, Mathew S, Harazinova V, Saikkonen K, Fuchs B. Endophytic Beauveria bassiana induces biosynthesis of flavonoids in oilseed rape following both seed inoculation and natural colonization. PEST MANAGEMENT SCIENCE 2024; 80:2461-2470. [PMID: 37467342 DOI: 10.1002/ps.7672] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/25/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Cultivation of oilseed rape Brassica napus is pesticide-intensive, and alternative plant protection strategies are needed because both pesticide resistance and legislation narrow the range of effective chemical pesticides. The entomopathogenic fungus Beauveria bassiana is used as a biocontrol agent against various insect pests, but little is known about its endophytic potential and role in plant protection for oilseed rape. First, we studied whether B. bassiana can establish as an endophyte in oilseed rape, following seed inoculation. To evaluate the plant protection potential of endophytic B. bassiana on oilseed rape, we next examined its ability to induce plant metabolite biosynthesis. In another experiment, we tested the effect of seed inoculation on seedling survival in a semi-field experiment. RESULTS Beauveria bassiana endophytically colonized oilseed rape following seed inoculation, and, in addition, natural colonization was also recorded. Maximum colonization rate was 40%, and generally increased with inoculation time. Seed inoculation did not affect the germination probability or growth of oilseed rape, but B. bassiana inoculated seeds germinated more slowly compared to controls. Endophytic colonization of B. bassiana induced biosynthesis of several flavonoids in oilseed rape leaves under controlled conditions. In the experiment conducted in semi-field conditions, inoculated seedlings had slightly higher mortality compared to control seedlings. CONCLUSION Beauveria bassiana showed endophytic potential on oilseed rape via both natural colonization and seed inoculation, and it induced the biosynthesis of flavonoids. However, its use as an endophyte for plant protection against pests or pathogens for oilseed rape remains unclear. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Anne Muola
- Biodiversity Unit, University of Turku, Turku, Finland
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Tromsø, Norway
| | - Traci Birge
- Biodiversity Unit, University of Turku, Turku, Finland
| | - Marjo Helander
- Department of Biology, University of Turku, Turku, Finland
| | - Suni Mathew
- Biodiversity Unit, University of Turku, Turku, Finland
- Department of Biology, University of Turku, Turku, Finland
| | - Vili Harazinova
- Department of Entomology, Agricultural University-Plovdiv, Plovdiv, Bulgaria
| | | | | |
Collapse
|
3
|
Xie M, Gao X, Zhang S, Fu X, Le Y, Wang L. Cadmium stimulated cooperation between bacterial endophytes and plant intrinsic detoxification mechanism in Lonicera japonica thunb. CHEMOSPHERE 2023; 325:138411. [PMID: 36931404 DOI: 10.1016/j.chemosphere.2023.138411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/16/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Due to the intimate association between plant physiology and metabolism, the internal colonizing microbe (endophytes) community must be adjusted to support plant productivity in response to cell damage in plants under stress. However, how endophytes coordinate their activities with plant intrinsic mechanisms such as antioxidative systems and detoxification pathways during Cd accumulation remains unknown. In this hydroponic pot study, we investigated how exposure of Lonicera japonica. thunb. to different levels of Cd (0.5, 2.5, 5, 10, and 20 mg kg-1) affected plant growth, metabolic pathways, and endophyte community structure and function. Although Cd accumulation increased at 5 mg kg-1 Cd, the biomass and height of L. japonica increased in association with elevated endophyte-involved plant detoxification activities. Endophytes, such as Sphingomonas, Klenkia, and Modestobacter, expressed major antioxidative regulators (superoxide dismutase and ascorbate acid) to detoxify Cd in L. japonica. Furthermore, L. japonica and its endophytes synergistically regulated the toxic effects of Cd accumulation via multiple plant metabolic defensive pathways to increase resistance to metal-induced stress.
Collapse
Affiliation(s)
- Mengdi Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaoyu Gao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Saiwei Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaohua Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yiquan Le
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
4
|
Epichloë Endophytes Shape the Foliar Endophytic Fungal Microbiome and Alter the Auxin and Salicylic Acid Phytohormone Levels in Two Meadow Fescue Cultivars. J Fungi (Basel) 2023; 9:jof9010090. [PMID: 36675911 PMCID: PMC9861471 DOI: 10.3390/jof9010090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Plants harbor a large diversity of endophytic microbes. Meadow fescue (Festuca pratensis) is a cool-season grass known for its symbiotic relationship with the systemic and vertically-via seeds-transmitted fungal endophyte Epichloë uncinata, yet its effects on plant hormones and the microbial community is largely unexplored. Here, we sequenced the endophytic bacterial and fungal communities in the leaves and roots, analyzing phytohormone concentrations and plant performance parameters in Epichloë-symbiotic (E+) and Epichloë-free (E-) individuals of two meadow fescue cultivars. The endophytic microbial community differed between leaf and root tissues independent of Epichloë symbiosis, while the fungal community was different in the leaves of Epichloë-symbiotic and Epichloë-free plants in both cultivars. At the same time, Epichloë symbiosis decreased salicylic acid and increased auxin concentrations in leaves. Epichloë-symbiotic plants showed higher biomass and higher seed mass at the end of the season. Our results demonstrate that Epichloë symbiosis alters the leaf fungal microbiota, which coincides with changes in phytohormone concentrations, indicating that Epichloë endophytes affect both plant immune responses and other fungal endophytes. Whether the effect of Epichloë endophytes on other fungal endophytes is connected to changes in phytohormone concentrations remains to be elucidated.
Collapse
|
5
|
Laihonen M, Saikkonen K, Helander M, Vázquez de Aldana BR, Zabalgogeazcoa I, Fuchs B. Epichloë Endophyte-Promoted Seed Pathogen Increases Host Grass Resistance Against Insect Herbivory. Front Microbiol 2022; 12:786619. [PMID: 35087489 PMCID: PMC8787217 DOI: 10.3389/fmicb.2021.786619] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Plants host taxonomically and functionally complex communities of microbes. However, ecological studies on plant-microbe interactions rarely address the role of multiple co-occurring plant-associated microbes. Here, we contend that plant-associated microbes interact with each other and can have joint consequences for higher trophic levels. In this study we recorded the occurrence of the plant seed pathogenic fungus Claviceps purpurea and aphids (Sitobion sp.) on an established field experiment with red fescue (Festuca rubra) plants symbiotic to a seed transmitted endophytic fungus Epichloë festucae (E+) or non-symbiotic (E-). Both fungi are known to produce animal-toxic alkaloids. The study was conducted in a semi-natural setting, where E+ and E- plants from different origins (Spain and Northern Finland) were planted in a randomized design in a fenced common garden at Kevo Subarctic Research Station in Northern Finland. The results reveal that 45% of E+ plants were infected with Claviceps compared to 31% of E- plants. Uninfected plants had 4.5 times more aphids than Claviceps infected plants. By contrast, aphid infestation was unaffected by Epichloë symbiosis. Claviceps alkaloid concentrations correlated with a decrease in aphid numbers, which indicates their insect deterring features. These results show that plant mutualistic fungi can increase the infection probability of a pathogenic fungus, which then becomes beneficial to the plant by controlling herbivorous insects. Our study highlights the complexity and context dependency of species-species and multi-trophic interactions, thus challenging the labeling of species as plant mutualists or pathogens.
Collapse
Affiliation(s)
| | | | - Marjo Helander
- Department of Biology, University of Turku, Turku, Finland
| | | | - Iñigo Zabalgogeazcoa
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | | |
Collapse
|
6
|
Ali JG, Casteel CL, Mauck KE, Trase O. Chemical Ecology of Multitrophic Microbial Interactions: Plants, Insects, Microbes and the Metabolites that Connect Them. J Chem Ecol 2021; 46:645-648. [PMID: 32776182 DOI: 10.1007/s10886-020-01209-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jared G Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - C L Casteel
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA.
| | - K E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA.
| | - O Trase
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
7
|
Wang D, Zhou L, Wang Q, Ding J. Plant Chemistry Determines Host Preference and Performance of an Invasive Insect. FRONTIERS IN PLANT SCIENCE 2020; 11:594663. [PMID: 33240306 PMCID: PMC7677259 DOI: 10.3389/fpls.2020.594663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/15/2020] [Indexed: 05/31/2023]
Abstract
Understanding how host plant chemistry affects invasive insects is crucial for determining the physiological mechanism of host use and predicting invasive insect outbreak and damage on hosts. Here, we examined the effects of plant nutrition and defensive chemicals on host preference and performance of adults and larvae of the invasive potato tuberworm, Phthorimaea operculella (Zeller; Lepidoptera: Gelechiidae), on four native (Solanum tuberosum, Nicotiana tabacum, Datura stramonium, and Solanum lycopersicum) and three new (Solanum melongena, Physalis alkekengi, and Lycium barbarum) host plants. We found that adults preferred to oviposit on S. tuberosum and N. tabacum leaves and the soil around these native host plants over other hosts. Larvae performed well on S. tuberosum and N. tabacum, reaching higher pupa weight and having better survival. Larvae performed poorly on S. melongena, S. lycopersicum, P. alkekengi, D. stramonium, and L. barbarum, with lower pupa weight and lower survival. Solanum tuberosum and N. tabacum had higher leaf soluble proteins than other plants and lower leaf total phenolics than S. lycopersicum, D. stramonium, and L. barbarum. Moreover, carbon content and soluble protein were positively associated with larval survival, while defensive traits (lignin and total phenolics) negatively affected larval survival. These findings provide insights into understanding of biochemical mechanisms of interactions between invasive insects and host plants, indicating the importance of considering plant chemistry when assessing invasive insect host use and damage.
Collapse
|